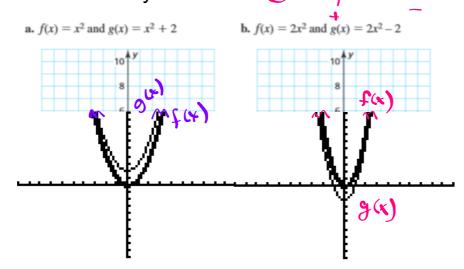
8.2 Graph
$$f(x) = ax^2 + c$$

Essential Question:

How does the value of c affect the graph of $f(x) = ax^2 + c$?

What You Will Learn:

- Graph quadratic functions of the form $f(x) = ax^2 + c$
- Solve real-life problems involving functions of the form $f(x) = ax^2 + c$


Core Vocabulary: Previous: translation

zero of a function vertex of a parabola axis of symmetry

vertical stretch vertical shrink

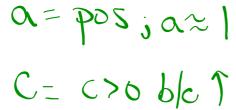
Feb 22-12:08 PM

EXPLORATION: Use a graphing calculator

8.2 Graph ax2 + c with work

EXPLORATION 2: Finding x-Intercepts of Graphs

Graph each function. Find the x-intercept of the graph. Explain how you found the

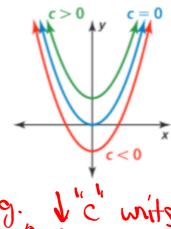

Feb 22-12:11 PM

Communicate Your Answer

1) How does the value of c affect the graph of $f(x) = ax^2 + c$?

Shifts the parabola up / down.

- 2) Use a graphing calculator to verify your answers to Question 1.
- 3) The figure shows the graph of a quadratic function of the form $y = ax^2 + c$. Describe possible values of a and c. Explain your reasoning.


G Core Concept

Graphing $f(x) = ax^2 + c$

- c is pos. T'c'units
- When c > 0, the graph of $f(x) = ax^2 + c$ is a vertical translation c units up of the graph of $f(x) = ax^2$.
- When c < 0, the graph of f(x) = ax² + c is a vertical translation |c| units down of the graph of f(x) = ax².

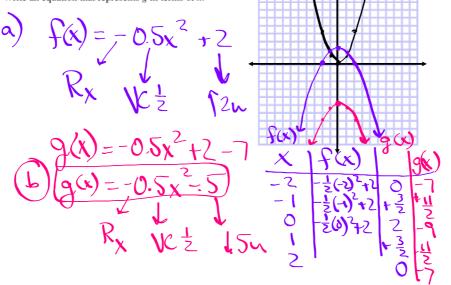
The vertex of the graph of $f(x) = ax^2 + c$ is (0, c), and the axis of symmetry is x = 0.

c is your y-int.

is neg. I'c' write

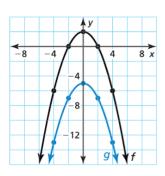
Feb 22-12:14 PM

Solving Real-Life Problems Soluting motif x-int.


A zero of a function f is an x-value for which f(x) = 0. A zero of a function is an x-intercept of the graph of the function.

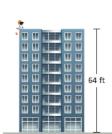
Example:

Let $f(x) = -0.5x^2 + 2$ and g(x) = f(x) - 7.


a. Describe the transformation from the graph of f to the graph of g. Then graph f and g in the same coordinate plane.

b. Write an equation that represents g in terms of x.

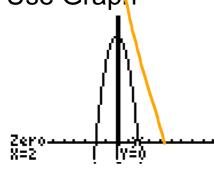
Feb 22-12:14 PM


8.2 Graph ax2 + c with work

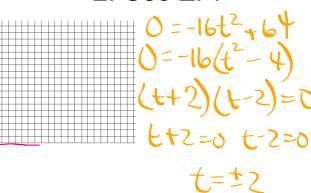
SOLUTION

a. The function g is of the form y = f(x) + k, where k = -7. So, the graph of g is a vertical translation 7 units down of the graph of f.

x		-2		2	4	$-0.5x^2 + 2$
f(x)	-6	0	2	0	-6	$\int_{0}^{\infty} -0.5x^2 + 2$ $\int_{0}^{\infty} f(x) - 7$
g(x)	-13	-7	-5	-7	-13	$\int I(x) - I$


The function $f(t) = -16t^2 + s_0$ represents the approximate height (in feet) of a falling object t seconds after it is dropped from an initial height s_0 (in feet). An egg is dropped from a height of 64 feet

- a. After how many seconds does the egg hit the ground?
- **b.** Suppose the initial height is adjusted by k feet. How will this affect part (a)?


S(t)=-16t2+64

Example:

2. Use ZPP

8.2 Graph
$$f(x) = ax^{2} + c$$

Assign:

p 429

A: 6, 10, 12, 16, 18, 24 - 34(e), 38, 44

B: 1, 2 - 14(e), 20 - 28 (e), 30, 32, 42

C: 2, 4, 6, 10, 14, 18, 20, 22, 28, 42

Feb 22-12:20 PM