8.4 Practice A

1–3: Determine whether the function is *even*, *odd*, or *neither*.

1. $g(x) = 4^x - 1$ **2.** f(x) = 2x - 5 **3.** $h(x) = 2x^2 + 5$

4 – 5: Determine whether the function represented by the graph is even, odd, or neither.

6-8: Find the vertex and the axis of symmetry of the graph of the function.

6. $f(x) = 4(x+2)^2$ **7.** $f(x) = \frac{1}{3}(x-3)^2$ **8.** $y = -5(x+7)^2$

9–11: Graph the function. Compare the graph to the graph of $f(x) = x^2$.

9.
$$g(x) = 2(x + 1)^2$$

10. $g(x) = 3(x - 2)^2$
11. $g(x) = \frac{1}{4}(x + 6)^2$

12–14: Find the vertex and the axis of symmetry of the graph of the function.

12.
$$y = -5(x+3)^2 - 2$$
 13. $f(x) = 2(x-2)^2 + 5$ **14.** $y = -3(x+5)^2 - 4$

15 – 16: Graph the function. Compare the graph to the graph of $f(x) = x^2$.

15. $g(x) = (x - 3)^2 + 2$

16.
$$g(x) = -(x+2)^2 - 4$$

17 – 18: Rewrite the quadratic function in vertex form.

17.
$$y = 2x^2 + 4x - 1$$

18. $f(x) = 3x^2 - 12x + 4$

19. The graph of $y = x^2$ is translated 4 units left and 3 units down. Write an equation for the function in vertex form and in standard form. Describe advantages of writing the function in each form.