8.4 Variation & Problem Solving DAY ONE

OBJECTIVE 1: Solving Problems Involving Direct Variation

<u>Direct variation</u> deals with a constant of variation that is proportional. Typically the problem will read, "C varies directly as r, or <u>y varies directly as x</u>. This produces the function y = kx where k is the <u>constant of variation</u>. This variation will produce a linear graph with k as the slope that will pass through the origin.

Direct Variation

y varies directly as x or y is directly proportional to x, if there is a nonzero constant k such that y = kxThe number k is called the constant of variation or the constant of proportionality.

Example 1: Suppose that y varies directly as x. If y is 5 when x is 30, find the constant of variation and the direct variation equation.

$$\frac{S = |K(30)|}{30 \implies 30}$$

$$|K = \frac{1}{6}|$$

$$|Y = \frac{1}{6} \times 1$$

Practice 1: What if y is 20 when x is 15? $\sqrt{-1}$

Example 2: Using Direct Variation and Hooke's Law Hooke's law states that the distance a spring stretches is directly proportional to the weight attached to the spring. If a 40-pound weight attached to the spring stretches the spring 54 inches, find the distance that a 65-pound weight attached to

Practice 2:

Use Hooke's law as stated in Example 2. If a 36-pound weight attached to a spring stretches the spring 9 inches, find the distance that a 75-pound weight attached to the spring stretches the spring.

OBJECTIVE 2: Solving Problems Involving Inverse Variation

When y is proportional to the reciprocal of another variable x, then we say "y varies inversely as x" or inversely proportional.

Example 3: Suppose the u varies inversely as w. If u is 3 when w is 5, find the constant of variation and the inverse variation equation.

 $u = \frac{15}{w}$

4= K 5.3= K [15= K]

Practice 3:

Now b varies inversely as a. If b is 5 when a is 9, find the constant of variation and the inverse variation equation.

$$b = \frac{k}{a}$$

$$9.5 = \frac{k}{9.9}$$

$$45 = k$$

Example 4: Using Inverse Variation and Boyle's Law

Boyle's law says that if the temperature stays the same, the pressure P of a gas is inversely proportional to the volume V. If a cylinder in a steam engine has a <u>pressure of 960 kilopascals</u> when the volume is 1.4 cubic meters, find the pressure when the volume increases to 2.5 cubic meters.

960*1.4
1344/2.5
1344
1344/2.5
$$P = \frac{1}{1}$$
 $P = \frac{1}{1}$
 $P = \frac{1}{1}$

Practice 4:

Use Boyle's law as stated in Example 4. If P = 350 kilopascals when V = 2.8 cubic meters, find the pressure when the volume decreases to 1.5 cubic meters.

decreases to 1.5 cubic meters.
$$P = \frac{1}{2}$$
 $P = \frac{350}{1}$ $P = \frac{1}{2}$ $P = \frac{350}{2}$ $P = \frac{3$

8.4 DAY ONE HW Assignment

pg. 549: 1 - 25 (o)