9.1 Simplifying Radical Expressions Quotient DAY TWO Worksheet

Quotient Property of Square Roots A fraction containing radicals is in simplest form if no radicals are left in the denominator. The **Quotient Property of Square Roots** and rationalizing the denominator can be used to simplify radical expressions that involve division. When you rationalize the denominator, you multiply the numerator and denominator by a radical expression that gives a rational number in the denominator.

Quotient Property of Square Roots	For any numbers <i>a</i> and <i>b</i> , where $a \ge 0$ and $b > 0$, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.
Example Simplify $\sqrt{\frac{56}{45}}$.	
$\sqrt{\frac{56}{45}} = \sqrt{\frac{4 \cdot 14}{9 \cdot 5}}$ $= \frac{2 \cdot \sqrt{14}}{3 \cdot \sqrt{15}}$	
$=\frac{2\cdot\sqrt{14}}{3\cdot\sqrt{15}}$	Simplify the numerator and denominator.
$=\frac{2\sqrt{14}}{3\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}}$	Multiply by $\frac{\sqrt{5}}{\sqrt{5}}$ to rationalize the denominator.
$=\frac{2\sqrt{70}}{15}$	Product Property of Square Roots

Exercises

Simplify each expression.

$1.\frac{\sqrt{9}}{\sqrt{18}}$	2. $\frac{\sqrt{8}}{\sqrt{24}}$
3. $\frac{\sqrt{100}}{\sqrt{121}}$	4. $\frac{\sqrt{75}}{\sqrt{3}}$
5. $\frac{8\sqrt{2}}{2\sqrt{8}}$	6. $\sqrt{\frac{2}{5}} \cdot \sqrt{\frac{6}{5}}$
7. $\sqrt{\frac{3}{4}} \cdot \sqrt{\frac{5}{2}}$	8. $\sqrt{\frac{5}{7}} \cdot \sqrt{\frac{2}{5}}$
9. $\sqrt{\frac{3a^2}{10b^6}}$	10. $\sqrt{\frac{x^6}{y^4}}$
11. $\sqrt{\frac{100a^4}{144b^8}}$	12. $\sqrt{rac{75b^3c^6}{a^2}}$
13. $\frac{\sqrt{4}}{3-\sqrt{5}}$	14. $\frac{\sqrt{8}}{2+\sqrt{3}}$
15. $\frac{\sqrt{5}}{5+\sqrt{5}}$	16. $\frac{\sqrt{8}}{2\sqrt{7}+4\sqrt{10}}$

Practice: Show work below or on a separate sheet of paper. Only boxed answers should appear next to the problems provided.

Simplify.

1. $\sqrt{24}$	2. $\sqrt{60}$
3. $\sqrt{108}$	$4.\sqrt{8}\cdot\sqrt{6}$
5. $\sqrt{7} \cdot \sqrt{14}$	6. $3\sqrt{12} \cdot 5\sqrt{6}$
7. $4\sqrt{3} \cdot 3\sqrt{18}$	8. $\sqrt{27tu^3}$
9. $\sqrt{50p^5}$	10. $\sqrt{108x^6y^4z^5}$
11. $\sqrt{56m^2n^4p^5}$	12. $\frac{\sqrt{8}}{\sqrt{6}}$
13. $\sqrt{\frac{2}{10}}$	14. $\sqrt{\frac{5}{32}}$
15. $\sqrt{\frac{3}{4}} \cdot \sqrt{\frac{4}{5}}$	16. $\sqrt{\frac{1}{7}} \cdot \sqrt{\frac{7}{11}}$
17. $\frac{\sqrt{3k}}{\sqrt{8}}$	18. $\sqrt{\frac{18}{x^3}}$
$19.\sqrt{\frac{4y}{3y^2}}$	20. $\sqrt{\frac{9ab}{4ab^4}}$
21. $\frac{3}{5-\sqrt{2}}$	22. $\frac{8}{3+\sqrt{3}}$
23. $\frac{5}{\sqrt{7} + \sqrt{3}}$	24. $\frac{3\sqrt{7}}{-1-\sqrt{27}}$