9.3 WS A

In Exercises 1–3, determine the number of real solutions of the equation. Then solve the equation using square roots.

1.
$$x^2 = 36$$
 2. $x^2 = -16$ **3.** $x^2 = 0$

In Exercises 4–12, solve the equation using square roots.

4.
$$x^2 - 9 = 0$$
 5. $x^2 + 8 = 0$ **6.** $2x^2 + 10 = 0$

7.
$$x^2 - 24 = 40$$
 8. $2x^2 - 72 = 0$ **9.** $-x^2 + 25 = 25$

10.
$$(x-4)^2 = 0$$
 11. $(x+2)^2 = 9$ **12.** $(3x+1)^2 = 49$

In Exercises 13–15, solve the equation using square roots. Round your solutions to the nearest hundredth.

13.
$$x^2 + 5 = 11$$
 14. $x^2 - 8 = 10$ **15.** $3x^2 - 1 = 14$

16. Describe and correct the error in solving the equation $x^2 - 9 = 16$ using square roots.

$$\begin{array}{c} x^2 - 9 = 16\\ x - 3 = 4\\ x = 7 \end{array}$$

- **17.** A rectangular box has a height of 7 centimeters and a volume of 336 cubic centimeters. The length of the box is three times the width.
 - **a.** Write an equation describing this situation.

b. Find the length and width of the box.

18. Without graphing, where do the graphs of $y = x^2$ and y = 25 intersect? Explain through algebraic steps or in words.

19. Without graphing, where do the graphs of $y = x^2$ and y = 1.21 intersect? Explain through algebraic steps or in words.