9.4: Solving Quadratic Equations by

"Completing the Square"

Essential Question

How can you use "completing the square" to solve a quadratic equation?

Essential Question

G Core Concept

Completing the Square

Words To complete the square for an expression of the form $x^2 + bx$, follow these steps.

Step 1 Find one-half of b, the coefficient of x.

Step 2 Square the result from Step 1.

Step 3 Add the result from Step 2 to $x^2 + bx$.

Factor the resulting expression as the square of a binomial.

Algebra
$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

Examples:

Complete the square for each expression. Then factor the trinomial.

a.
$$x^{2} + 18x + 81$$

b. $x^{2} - 17x + 281$

$$= (8)^{2}$$

$$= (8)^{2}$$

$$= (8)^{2}$$

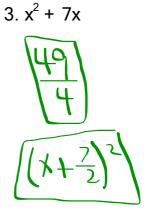
$$= (8)^{2}$$

$$= (8)^{2}$$

$$= (8)^{2}$$

$$= (8)^{2}$$

$$= (8)^{2}$$


Example 1

YOUR TURN:

Complete the square for the expression. Then factor the trinomial.

2. $x^2 - 4x$

1.
$$x^2 + 10x$$
 25
 $(x + 5)^2$

EXAMPLE:

Solve $x^2 - 18x = -17$ by completing the square.

$$x^{2} - 18x + 181 = -17 + 181$$

$$D = \left(-\frac{18}{2}\right)^{2} - (-7)^{2}$$

$$(x - 9)^{2} = 164$$

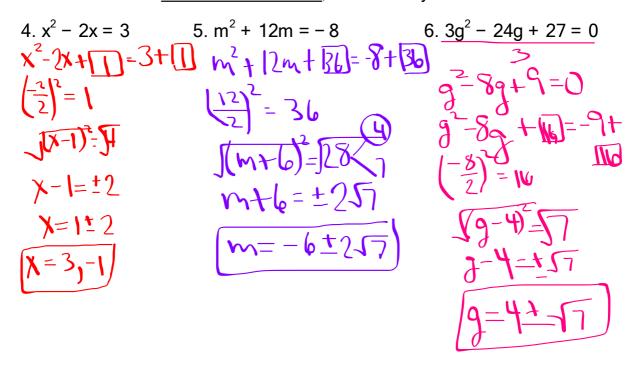
$$x - 9 = \frac{1}{2}$$

$$+ 9 = \frac{1}{4}$$

$$+ 9$$

$$x - 9 = \frac{1}{4}$$

$$+ 9$$


Example 2

EXAMPLE:

Solve $2x^2 + 12x - 10 = 0$ by completing the square. 2 = 2 = 3 $x^2 + 6x - 5 = 0$ $x^2 + 6x + 9 = 5 + 9$

YOUR TURN:

Solve the equation by completing the square. Round your solutions to the nearest hundredth, if necessary.

Monitoring Progress 4-6

Example:

Find the minimum value of $y = |x^2 + 8x + 5$.

A D D Min

A D D MAX (-4, -11) $f(-4) = (-4)^2 + 7(4) + 5$ = (-32 + 5) = 11

Example:

Find the maximum value of $y = -x^2 + 4x + 2$.

$$\frac{+4}{2(-1)} = -2$$

$$-(-2)^{2} + 4(-2) + 2$$

$$-4 - 8 + 2 = [-10]$$

Example 5

YOUR TURN:

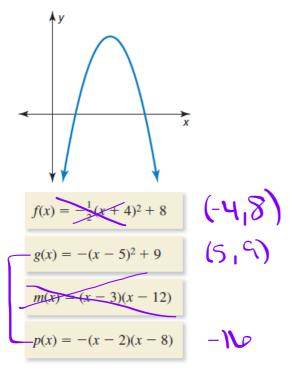
Determine whether the quadratic function has a maximum or minimum value. Then find the value.

7.
$$y = -x^{2} - 4x + 4$$

8. $y = x^{2} + 12x + 40$

9. $y = x^{2} - 2x - 2$

$$\frac{-(-4)}{2(-1)} = \frac{4}{-2} = -1$$


$$\frac{-(-2)}{2(-1)} = -1$$

$$\frac{-(-2)}{2(-1)} = -1$$

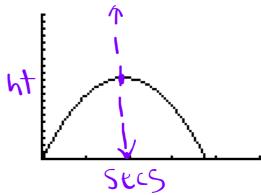
$$\frac{-(-2)}{2(-1)} = -1$$

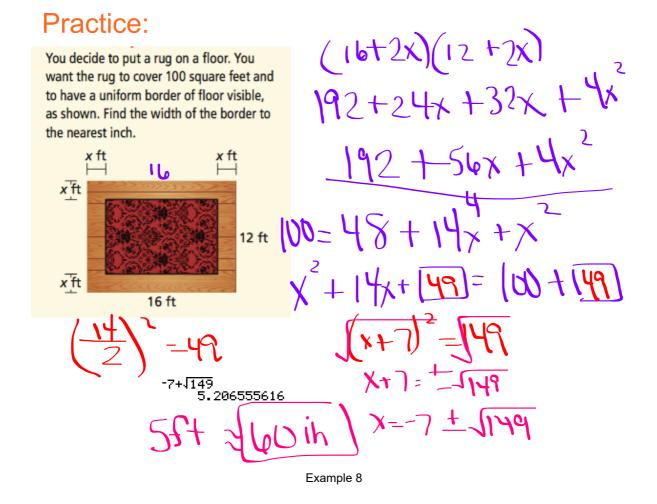
$$\frac{-(-2)}{2(-1)} = \frac{2}{2} = 1$$

Which of the functions could be represented by the graph? Explain.

Example 6

REAL-WORLD APPLICATION


The function $y = -16x^2 + 60x$ represents the height y (in feet) of a model rocket x seconds after it is launched.


(a) Find the maximum height of the rocket.

(b) Find and interpret the axis of symmetry.

HW Assignment:

9.4 WS's

WS WB: 5, 6, 10, 11, 17, 18, 23, 24, 25 (9?s)

WS A: evens (11?s)

20 total questions for tonight!