9.5: Solving Quadratic Equations using the

"Quadratic Formula"

Essential Question

How can you derive a formula that can be used to write the solutions of any quadratic equation in standard form?

Essential Question

The following steps show a method of solving $ax^2 + bx + c = 0$.

Explain what was done in each step.

$$ax^{2} + bx + c = 0$$

$$4a^{2}x^{2} + 4abx + 4ac = 0$$

$$4a^{2}x^{2} + 4abx + 4ac + b^{2} = b^{2}$$

$$4a^{2}x^{2} + 4abx + b^{2} = b^{2} - 4ac$$

$$(2ax + b)^{2} = b^{2} - 4ac$$

$$2ax + b = \pm \sqrt{b^{2} - 4ac}$$

$$2ax = -b \pm \sqrt{b^{2} - 4ac}$$
Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2ax^{2}}$$
Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2ax^{2}}$$
Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2ax^{2}}$$

Exploration 1

G Core Concept

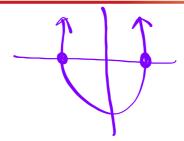
Quadratic Formula

The real solutions of the quadratic equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic Formula

where $a \neq 0$ and $b^2 - 4ac \geq 0$.



Core Concept

Example:

Solve $12x^2 - 4x - 5 = 0$ using the Quadratic Formula. State what a, b, and c you are using to show work.

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\chi = -(-4) \pm \sqrt{(-4)^2 - 4(12)(-5)}$$

$$X = \frac{4 \pm \sqrt{256}}{24} = \frac{4 \pm 16}{24} = \frac{4 \pm 16}{24} = \frac{20}{24} = \frac{5}{6}$$

$$\frac{4 - 16}{24} = \frac{-12}{24} = \frac{5}{24} = \frac$$

YOUR TURN:

Solve the equation using the Quadratic Formula. Round your solutions to the nearest tenth, if necessary.

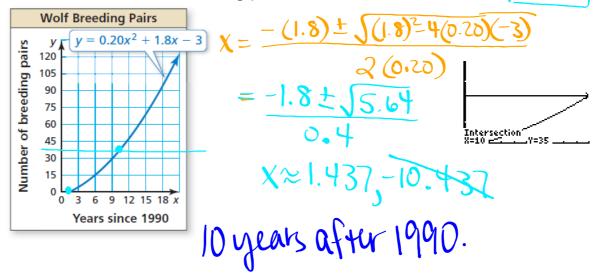
1.
$$x^{2} - 6x + 5 = 0$$
 $a = 1$ $b = -6$ $c = 5$

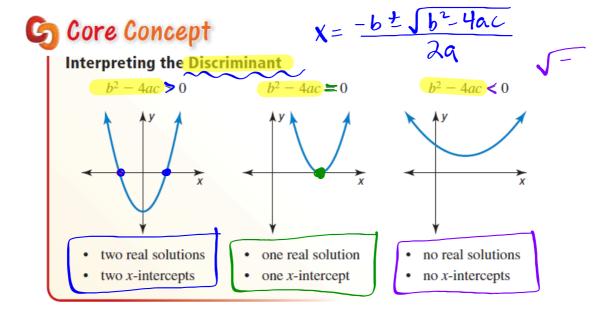
2. $\frac{1}{2}x^{2} + x - 10 = 0$
 $a = \frac{1}{2}$ $b = \frac{1}{2}$ $c = -10$
 $x = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4(1)(5)}}{2(1)}$
 $= \frac{6 \pm \sqrt{16}}{2}$
 $= \frac{16 \pm \sqrt{16}}{2}$
 $=$

Monitoring Progress 1-4

REAL-WORLD APPLICATION:

The number y of Northern Rocky Mountain wolf breeding pairs x years since 1990 can be modeled by the function $y = 0.20x^2 + 1.8x - 3$. When were there about 35 breeding pairs? $Q = 0.20x^2 + 1.8x - 3$.





Core Concept

Example:

a. Determine the number of real solutions of $2x^2 - 3x - 1 = 0$. 0 = 2 b = -3 c = -1

$$(-3)^2 - 4(2)(-1)$$

9 + 8 = 17 > 0

b. Determine the number of real solutions of $x^2 + 4 = x$.

$$(-1)^{2} + (1)(4)$$

$$= |-1|_{0} = -15 < 0$$

$$= |-1|_{0} = -15 < 0$$

$$= |-1|_{0} = -15 < 0$$

$$= |-1|_{0} = -15 < 0$$

$$= |-1|_{0} = -15 < 0$$

$$= |-1|_{0} = -15 < 0$$

$$= |-1|_{0} = -15 < 0$$

YOUR TURN:

Determine the number of real solutions of the equation.

7.
$$-x^2 + 4x - 4 = 0$$

 $Q = -1$ $b = 4$ $c = -4$
 $= (4)^2 - 4(-1)(-4)$ [1 real sol.]
 $= 16 - 16 = 0$

8.
$$6x^2 + 2x = -1$$
 = $(2)^2 - 4(6)(1)$
 $6x^2 + 2x + 1 = 0$ = $4 - 24 = -20 < 0$
 $0 = 6 = 2 < -1$ | no real $80!$

9.
$$\frac{1}{2}x^2 = 7x - 1$$
 $\frac{1}{2}x^2 - 7x + 1 = 0$
 $A = \frac{1}{2}b = -7c = 1$
 $= (-7)^2 - 4(\frac{1}{2})(1)$
 $= 49 - 2 = 47 > 0$
 $\Rightarrow x = 1 = 0$
 $\Rightarrow x$

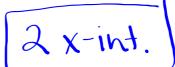
Monitoring Progress 7-9

EXAMPLE:

Find the number of x-intercepts of the graph of $y = 2x^2 - 4x - 3$. A = 2 b = -4 c = -3

$$(-4)^2 - 4(2)(-3)$$

= 16 + 24
= 40 > 0



YOUR TURN:

Find the number of x-intercepts of the graph of the function.

10.
$$y = -x^2 + x - 6$$

11. $y = x^2 - x$

12. $f(x) = x^2 + 12x + 36$
 $a = -1 \ b = 1 \ c = -6$
 $a = 1 \ b = -1 \ c = 0$
 $a = 1 \ b = -1 \ c = 0$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 36$
 $a = 1 \ b = 12 \ c = 12$
 $a =$

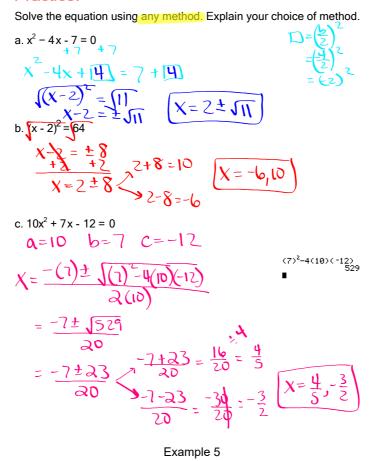
Monitoring Progress 10-12

G Core Concept

Methods for Solving Quadratic Equations

Method	Advantages	Disadvantages
Factoring (Lessons 7.5–7.8)	Straightforward when the equation can be factored easily	Some equations are not factorable.
Graphing (Lesson 9.2)	 Can easily see the number of solutions Use when approximate solutions are sufficient. 	May not give exact solutions
	Can use a graphing calculator	
Using Square Roots (Lesson 9.3)	• Use to solve equations of the form $x^2 = d$.	Can only be used for certain equations
Completing the Square (Lesson 9.4)	• Best used when $a = 1$ and b is even	May involve difficult calculations
Quadratic Formula (Lesson 9.5)	 Can be used for any quadratic equation Gives exact solutions	• Takes time to do calculations

Practice:



HW Assignment 9.5

WS from the WB

odds