\qquad Date: \qquad Period: \qquad

Ch. 6 Test Review CYU

\square Use when you get it right all by yourself
\boldsymbol{S} Use when you did it all by yourself, but made a silly mistake
\boldsymbol{H} Use when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
XUse when a question was attempted but wrong (get help)

N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED	
Growth/Decay Factor (b)	1,2			
Growth/Decay Rate (r)	1,2	9,10		
y-intercepts \& Initial Value (a)	1,2	9,10		
Exponential Regression	1,2	$8,9,10$		
Graphing Exponentials \& Logarithmic	1,2	$3,4,5$		
Describing Transformations		$3,4,5$		
Identifying Asymptotes	$3,4,5$			
Identifying Pivot Points	$3,4,5$		$8,9,10$	
Domain \& Range in interval notation	6		11	
End Behavior			11	
Real-World Application		$8,9,10$	11	
Predicting using Models			12	
Evaluating Logarithms			12	
Expanding Logarithms				
Condensing Logarithms				
Solving Exponential Equations/Inequalities				
Solving Logarithims Equations/Inequalities				

Study Guide List:

Common Log
Natural Log
Common Log Base
Natural Log Base
Logarithmic Transformations
Exponential Transformations
Evaluating Logarithmic Expressions
Applying Logarithmic Properties
Writing Logarithmic Equations from a graph

Writing Exponential Equations from a graph Exponential Regression
Solve Logarithmic Equations using Exponentials
Solve Exponential Equations using Logarithms Logarithmic Application Problems Exponential Application Problems

Notes, CYU, Dailies, Quiz Review, and Quizzes will all help study!

1 - 2: For each table, decide if it's exponential growth or exponential decay. Then, identify the y intercept (coordinate form) and the growth or decay rate and factor. Lastly, write an exponential equation, using regression on the calculator, and create a graph on the coordinate plane provided below.

1. Growth or Decay

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	32	8	2	$\frac{1}{2}$	$\frac{1}{8}$

y-intercept: \qquad
G/D rate: \qquad G/D factor: \qquad
equation: \qquad

2. Growth or Decay

x	0	1	2	3	4
y	1	5	25	125	625

y-intercept: \qquad
G/D rate: \qquad G/D factor: \qquad
equation: \qquad

3 - 5: State the transformations and sketch a graph of the parent and the new equation. Be sure to include the asymptote and pivot point on your graph!
3. $\mathrm{f}(\mathrm{x})=\frac{1}{4}(2)^{x-2}+3$
4. $g(x)=-\frac{1}{2}(6)^{-x-1}-1$
5. $h(x)=2\left(\frac{1}{4}\right)^{x}+4$

6. Given the graph, write the domain and range in interval notation.

Domain: \qquad

Range: \qquad

7. Given the graph of the exponential decay function, describe the end behavior.

As $\mathrm{x} \rightarrow$ \qquad , $y \rightarrow$ \qquad .

As $x \rightarrow$ \qquad , $y \rightarrow$ \qquad .

8. In the graph, the population density is an exponential function of time. Use the graph to write an equation and make a prediction. (HINT: create a T-chart from the graph!)
a. Equation:
b. When the time value is 7 , make a prediction of the population density using your equation from above.

9. Mrs. Ramirez deposited $\$ 10,000$ into a money market account that is earning compound interest at a rate of 3% per year. This can be represented with $y=a(1+$ $r)^{x}$, where y is the total amount, a is the initial amount, r is the rate, and x is the time in years.
a. Identify each of the following: $a=$ \qquad $r=$ \qquad
b. Write an equation: \qquad
c. In 7 years, how much money will Mrs. Ramirez have in her account? \qquad
d. In 22 years, how much money will she have in her account? \qquad

10. A new car that originally costs $\$ 21,000$ depreciates 15% per year. This can be represented with the exponential decay function $y=a(1-r)^{x}$, where y is the total amount, a is the initial amount, r is the rate, and x is the time in years.
a. Identify each of the following: $a=$ \qquad

$$
r=
$$

\qquad
b. Write an equation: \qquad
c. Create a table to represent the depreciation value of the car over 7 years.

\mathbf{x}	0							
\mathbf{y}								

11. Evaluate the following logarithms. Expand or condense when appropriate.
a. $\log _{3} 27 x^{7}$
b. $\log _{7} \frac{b^{2}}{6}$
c. $\log x+3 \log 2-\log y$
d. $\log _{5}(6 a)^{3}$
e. $3 \log 4-2(\log n+\log m)$
f. $\frac{\mathrm{r} \log d}{2}$
12. Solve the following equations and inequalities. Check for extraneous solutions.
a. $3.4 e^{2-2 n}-9=-4$
b. $5 \cdot 6^{3 m}=20$
c. $16^{n-7}+5<24$
d. $-2 \log _{5} 7 x \geq 2$
e. $\log _{12}\left(v^{2}+35\right)=\log _{12}(-12 v-1)$
f. $-6 \log _{3}(x-3)=-24$

CYU Reflection: How far can you go: basic, intermediate, or advanced?
Rate your mastery level!
How confident are you with the skills this CYU covered? Circle the score you would give yourself.

