Algebra 1 Review CYU: Quadratic Functions DAY TWO

☑ Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake

HUse when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Domain/Range	1	2	
Vertex	2	3	18, 24
Minimum/Maximum	2	3	5
Axis of Symmetry	2		7
Vertex Form	2, 13	10, 12, 16	15, 24
Standard Form	1, 22, 23	3, 12, 16	14
Solving Quadratic Equations	4	6, 19, 20	8, 17, 18, 23
Factoring	4, 21	20	
Completing the Square		20	17, 23
Quadratic Formula	14	20	
Projectile Motion		5, 6	
Zeros/Roots/x-intercepts/Solutions	9, 14, 21, 22	6, 19, 20	8, 17, 18
Transformations	10, 13	11	
Writing Quadratic Equations			15, 18, 24
Factored/Intercept/Root Form	21	19	
Square Root Method			23
Quadratic Regression		25	
Modeling Quadratics			26
Finite Differences	25		

1. Graph the function $f(x) = x^2 + 2x - 8$ and identify the domain and range in interval notation. Graph on the calculator to get a visual.

Domain:	Range:
2. Fill in the key features and chara $f(x) = -(x+3)^2 - 4$?	cteristics for the function
Vertex:	Maximum or Minimum?
Axis of symmetry:	
Domain:	Range:
3. Graph the function $f(x) = -x^2 + 2$ whether the vertex is a maximum Vertex: Maxim	x - 8 and identify the vertex and m or minimum. num or minimum:
4. What are the factors for the follo (HINT: solve by factorin $x^{2} + 2x - 8 = 0$	wing quadratic function:

Scenario for 5 and 6: Suppose you shoot a small rocket in the air with an initial velocity of 120 feet per second. The equation which

represents this is $y = -15x^2 + 120x$ where y is the feet the rocket is above the ground, and x is the time in seconds from the moment the rocket was shot into the air.

5. What is the maximum height the rocket reaches?

- 6. How many seconds does it take the rocket to touch the ground?
- 7. Two points on the graph of a quadratic function are shown in the grid below.

What is the equation of the axis of symmetry of the graph of this function?

Axis of symmetry: _____

8. What are the solution(s) of the quadratic function graphed below?

Solution(s):_

9. The graph of a quadratic function f(x) is shown below. Based on the graph, between which two values of x is a zero of f(x) located?

10. Describe the transformation of $h(x) = 0.33(x+3)^2 - 2$ from the quadratic parent function?

11. The graph of $g(x) = x^2 - 2$ is shown below. If the coefficient of x^2 is changed from 1 to another positive number to create a new function, how will the graph of the new function compare with the graph of the original function?

- A The x-intercepts of the new graph will be the same as the x-intercepts of the original graph.
- **B** The vertex of the new graph will be different from the vertex of the original graph.
- **C** The new graph will be wider or narrower than the original graph.
- **D** The new graph will open in the opposite direction as the original graph.
- 12. Which shows the standard form of the function $y = -3(x-2)^2 + 1$
 - **F** $y = 9x^2 + 36x + 37$ **G** $y = -3x^2 + 12x - 11$ **H** $y = -3x^2 - 4x + 5$ **J** $y = -3x^2 - 11$
- 13. How does the function $f(x) = -(x+2)^2 3$ compare with the quadratic parent function?
- 14. Use the quadratic formula to find the zeros of: $x^2 2x + 7 = 0$.
- 15. A parabola has vertex (2, 5) and also passes through the point (-1, 7). Write the equation of the parabola in vertex form.
- 16. Write the quadratic function in standard form.

$$y = 2(x-3)^2 + 5$$

17. For what value of "c" will $f(x) = x^2 + 12x + c$ have a zero at -6? (Complete the square)

18. Write the standard form equation that represents the following graph of a quadratic function.

19. What are the solution(s) for the quadratic equation $x^2 - 16 = 0$?

20. What are the root(s) for the equation $8x^2 + 2x - 3 = 0$?

21. What are the factors and solution(s) for the equation $2x^2 + 2x - 4$

- **F** 2(x+2)(x-1); x = -2 and x = 1
- **G** (x+2)(x-1); x = -2 and x = 1
- H 2(x+2)(x-1); x = 2 and x = -1
- **J** (x-4)(x+1); x = -4 and x = 1
- 22. The x-intercepts of a quadratic equation are (0,0) and (4,0). Which quadratic equation could represent this function?
 - **A** $y = x^2 4x$ **B** $y = x^2 + 4x$ **C** $y = x^2 - 4$ **D** $y = x^2 - 4x - 7$

23. Use the quadratic formula to find the roots of: $3x^2 + 6x = -2$.

24. Write the equation of the line that has a vertex of (3,9) and passes through the point (0,0)?

A
$$y = x^2$$

B $y = x^2 + 6$
C $y = (x - 3)^2 + 9$
D $y = -1(x - 3)^2 + 9$

25. An object is launched into the air. The table below shows the object's height above the ground at various times.

X (time)	1	2	3	4	5	6
Y (height)	63.5	156.5	281.5	438.5	627.5	848.5

Based on the data, which of the following is the closet to the object's height above the ground 9 seconds after being launched?

26. The function below can be used to model the area of a rectangle in square inches, *A*, if the rectangle has a perimeter of 50 inches and a width of *w* inches.

 $A = -w^2 + 25w$

In this situation, which of the following describes the domain of the function?

A 0 <u><</u> w <u><</u> 5	B 0 <u><</u> w <u><</u> 50
C 0 <u><</u> w <u><</u> 20	D 0 <u><</u> w <u><</u> 25

CYU Reflection: *How far can you go: basic, intermediate, or advanced?*

Rate your mastery level! How confident are you with the skills this CYU covered? Circle the score you would give yourself.

