Name		Date	Pd
6.1 - \square Use when S Use when you did HUse when you could do \boldsymbol{G} Use when you X Use when a ques N Use when	eview CY right all urself, but h a little d the pro tempted b was not ev	yourself de a silly mistake from teacher or pee in a group wrong (get help) ttempted	
CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Determining growth or decay	1, 2a		
Identifying the pivot point (PP)	1		
Horizontal asymptotes (HA)	1		
Vertical asymptotes (VA)	8		
Growth/Decay factor, b	1, 2b		
Growth/Decay rate, r	1, 2b		
Domain/Range in interval notation	1		
Exponential graphs	1, 2c		
Creating t-charts	1		
Real-world application	2c	4c, 4d	
Simplifying natural base "e"	3		
Compounded Continuously: $\mathrm{A}=\mathrm{Pe}^{\text {rt }}$		4b	
Compound Interest: $A=P\left(1 \pm \frac{r}{n}\right)^{n t}$		4a	
Converting between inverses "I heart LOGS"	5		
Evaluating logarithms	6		
Solving logarithms: creating the same base		7	
Describing transformations		8	
Writing rules given transformations		9	

Quiz 6.1-6.4 Study guide list:

1. I heart logs, inverse functions
2. I heart logs, inverse functions
3. Evaluate exponential \& logarithmic expressions
4. Evaluate exponential \& logarithmic expressions
5. Evaluate exponential \& logarithmic expressions
6. Evaluate exponential \& logarithmic expressions
7. Evaluate exponential \& logarithmic expressions
8. Evaluate exponential \& logarithmic expressions
9. Solve an exponential equation
10. Solve an exponential equation
11. Graph, PP, HA/VA, t-charts, transformations, \& EB of logarithmic \& exponential functions
12. Graph, PP, HA/VA, t-charts , transformations, \& EB of logarithmic \& exponential functions
13. Writing an equation based on transformations
14. Determining the transformations from a parent function
15. Determining growth/decay, HA/VA, factors, rates, domain \& range in interval notation
16. Simplifying expressions using exponential properties
17. ACT SPIRAL fractions.
18. ACT SPIRAL mean, median, mode.
19. ACT SPIRAL geometry: coordinates on a standard (x, y) plane.
20. ACT SPIRAL annual interest rate.

6.1: Exponential Growth \& Exponential Decay

1. Tell whether the function represents exponential growth or decay. Identify the pivot point $(P P)$, asymptote, factor, rate, and domain and range in interval notation. Then sketch a graph. Use a t-chart to show the points you are using to graph. PP must be one of the four points.
a. $f(x)=7^{x}$
b. $g(x)=(0.5)(1.8)^{x}$

Growth/Decay PP
HA/VA \qquad
G/D Factor \qquad
G/D Rate \qquad
Domain: \qquad
Range: \qquad

Growth/Decay PP \qquad
HA/VA \qquad
G/D Factor \qquad
G/D Rate \qquad
Domain: \qquad
Range: \qquad

2. The value of a rare coin y (in dollars) can be approximated by the model $y=0.25(1.06)^{t}$, where t is the number of years since the coin was minted.
a) Tell whether the model represents exponential growth or decay.
b) Identify the annual percent increase or decrease (growth/decay rate) in the value of the coin.
c) Estimate the number of years it will take for the value of the coin to reach $\$ 0.60$.

6.2: Natural Base "e"

3. Simplify each expression. Provide an exact and approximate answer when possible.
a. $e^{2 x} \cdot e^{5} \cdot e^{x-2}$
b. $\sqrt[3]{64 e^{9 x}}$
c. $\frac{27 e^{4}}{18 e^{7}}$
d. $\left(5 e^{-4 x}\right)^{3}$
4. You invest $\$ 5000$ in an account to save for college.
a) Option 1 pays 4% annual interest compounded monthly. What would be the balance in the account after two years?
b) Option 2 pays 4% annual interest compounded continuously. What would be the balance in the account after 2 years?
c) What is the difference between the two options after 10 years?
d) How would your answer to part (c) change if you invested $\$ 50,000$?

6.3: Logarithmic Functions

5. Rewrite the given equation in its inverse form. "I HEART LOGS! '"
a. $\log _{2} 8=3$
b. $\log _{7} 7=1$
c. $4^{0}=1$
d. $6^{-1}=\frac{1}{6}$
6. Evaluate the logarithm. If not exact, round to the thousandths. Simplify completely.
a. $\log 5$
b. $\log _{5} 125$
c. $\log _{4} 4^{3 \mathrm{x}}$
d. $8^{\log _{8} 2 x}$
e. $\log _{2} \frac{1}{8}$
7. Solve the following equations for x. Check for extraneous solutions. Box your final answer.
a. $5^{3 \mathrm{x}}=25^{\mathrm{x}+2}$
b. $16^{\mathrm{x}-3}=\frac{1}{8}$
c. $27=9^{4 x-1}$

6.4: Transformations of Exponential \& Logarithmic Functions

8. Describe the transformations of f represented by g. Then state the asymptote. a. $f(x)=2^{x}, g(x)=2^{x}+3$
b. $f(x)=3^{x}, g(x)=3^{x-1}$
c. $f(x)=e^{x}, g(x)=3 e^{(-x+2)}$
9. Write a rule for g that represents the indicated transformation of the graph off.
a. $f(x)=e^{x}$; vertical compression by a factor of $\frac{1}{4}$, followed by a translation 5 units up.
b. $f(x)=\log _{8} x$; reflection over the y-axis, followed by a translation 4 units left

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

