Name Key

Date	Pd

6.1 - 6.4 Quiz Review CYU

☐ Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake
Use when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

XUse when a question was attempted but wrong (get help)

NUse when a question was not even attempted

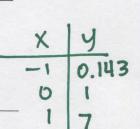
CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Determining growth or decay	1, 2a		
Identifying the pivot point (PP)	1		
Horizontal asymptotes (HA)	1		
Vertical asymptotes (VA)	8		
Growth/Decay factor, b	1, 2b		
Growth/Decay rate, r	1, 2b		
Domain/Range in interval notation	1		
Exponential graphs	1, 2c		
Creating t-charts	1		
Real-world application	2c	4c, 4d	
Simplifying natural base "e"	3		
Compounded Continuously: A = Pe ^{rt}		4b	
Compound Interest: $A = P(1 \pm \frac{r}{n})^{nt}$		4a	
Converting between inverses "I heart LOGS"	5		
Evaluating logarithms	6		
Solving logarithms: creating the same base		7	
Describing transformations		8	
Writing rules given transformations		9	

Quiz 6.1 - 6.4 Study guide list:

- 1. I heart logs, inverse functions
- 2. I heart logs, inverse functions
- 3. Evaluate exponential & logarithmic expressions
- 4. Evaluate exponential & logarithmic expressions
- 5. Evaluate exponential & logarithmic expressions
- 6. Evaluate exponential & logarithmic expressions
- 7. Evaluate exponential & logarithmic expressions
- 8. Evaluate exponential & logarithmic expressions
- 9. Solve an exponential equation
- 10. Solve an exponential equation
- 11. Graph, PP, HA/VA, t-charts, transformations, & EB of logarithmic & exponential functions
- 12. Graph, PP, HA/VA, t-charts, transformations, & EB of logarithmic & exponential functions
- 13. Writing an equation based on transformations
- 14. Determining the transformations from a parent function
- 15. Determining growth/decay, HA/VA, factors, rates, domain & range in interval notation
- 16. Simplifying expressions using exponential properties
- 17. ACT SPIRAL fractions.
- 18. ACT SPIRAL mean, median, mode.
- 19. ACT SPIRAL geometry: coordinates on a standard (x, y) plane.
- 20. ACT SPIRAL annual interest rate.

6.1: Exponential Growth & Exponential Decay

1. Tell whether the function represents exponential growth or decay. Identify the pivot point (PP), asymptote, factor, rate, and domain and range in interval notation. Then sketch a graph. Use a t-chart to show the points you are using to graph. PP must be one of the four points.

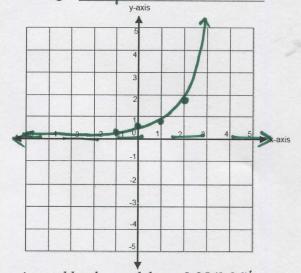

a. $f(x) = 7^x$

Growth/Decay	PP	(0,1)
HAVVA U	=0		

b G/D Factor r GD Rate

Domain:

Range:


b. $g(x) = (0.5) (1.8)^x$

PP (0,0.5) Growth/Decay

 \bigcirc HA/VA $\underline{y} = 0$ \bigcirc D Factor $\underline{/.8}$

©D Rate 0.8

Domain: (-x, x)

2. The value of a rare coin y (in dollars) can be approximated by the model $y = 0.25(1.06)^t$, where t is the number of years since the coin was minted.

a) Tell whether the model represents exponential growth or decay.

b=1.06

b) Identify the annual percent increase or decrease (growth/decay rate) in the value of the coin.

r= 0.06

6>1

c) Estimate the number of years it will take for the value of the coin to reach \$0.60.

$$y_1 = 0.60$$

 $y_2 = 0.25(1.06)^{t}$

6.2: Natural Base "e"

3. Simplify each expression. Provide an exact and approximate answer when possible.

a.
$$e^{2x} \cdot e^5 \cdot e^{x-2}$$

b.
$$\sqrt[3]{64e^{9x}}$$

c.
$$\frac{27e^4}{18e^7}$$

d.
$$(5e^{-4x})^3$$

$$\frac{3}{2e^3}$$

4. You invest \$5000 in an account to save for college.

a) Option 1 pays 4% annual interest compounded monthly. What would be the balance in the account after two years? \$5415.71

b) Option 2 pays 4% annual interest compounded continuously. What would be the balance in the account after 2 years?

\$5416.44

c) What is the difference between the two options after 10 years?

\$4.96

d) How would your answer to part (c) change if you invested \$50,000?

#49.60

6.3: Logarithmic Functions

5. Rewrite the given equation in its inverse form. "I HEART LOGS!"

a.
$$\log_2 8 = 3$$

b.
$$\log_7 7 = 1$$

c.
$$4^0 = 1$$

d.
$$6^{-1} = \frac{1}{6}$$

6. Evaluate the logarithm. If not exact, round to the thousandths. Simplify completely.

a. log 5

b. log₅125

c. log_44^{3x}

d. 8^{log_82x}

e. $\log_{2}\frac{1}{8}$

≈0.699

3

3×

2x

-3

7. Solve the following equations for x. Check for extraneous solutions. Box your final answer.

a.
$$5^{3x} = 25^{x+2}$$

b.
$$16^{x-3} = \frac{1}{8}$$

c.
$$27 = 9^{4x-1}$$

$$X = 4$$

$$X = \frac{9}{4}$$

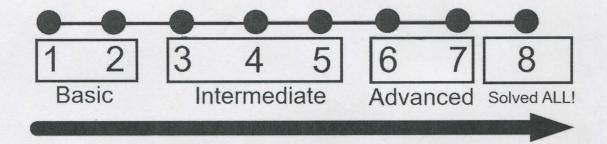
$$X = \frac{5}{8}$$

6.4: Transformations of Exponential & Logarithmic Functions

8. Describe the transformations of frepresented by g. Then state the asymptote. a. $f(x) = 2^x$, $g(x) = 2^x + 3$

b.
$$f(x) = 3^x$$
, $g(x) = 3^{x-1}$

c.
$$f(x) = e^x$$
, $g(x) = 3e^{(-x+2)}$


9. Write a rule for g that represents the indicated transformation of the graph of f. a. $f(x) = e^x$; vertical compression by a factor of $\frac{1}{4}$, followed by a translation 5 units up.

b. $f(x) = log_8x$; reflection over the y-axis, followed by a translation 4 units left

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

