Chapter 5 TEST REVIEW

I. Two-Column Proofs: Statements and Reasons all numbers. Correct notation too.

1. Given: $\overline{\mathrm{OG}} \perp \overline{\mathrm{GE}} ; \overline{\mathrm{UR}} \perp \overline{\mathrm{RL}} ; \overline{\mathrm{GE}} \cong \overline{\mathrm{RU}} ; \overline{\mathrm{OE}} \cong \overline{\mathrm{LU}}$ Prove: $\overline{\mathrm{OG}} \cong \overline{\mathrm{RL}}$

2. Given: $\overline{\mathrm{BF}} \cong \overline{\mathrm{ON}} ; \overline{\mathrm{BF}} / / \overline{\mathrm{ON}}$

Prove: $\angle \mathrm{BOR} \cong \angle \mathrm{NFR}$

3. Given: $\overline{\mathrm{AR}} \perp \overline{\mathrm{RP}} ; \overline{\mathrm{TS}} \perp \overline{\mathrm{SR}} ; \mathrm{R}$ is the midpoint of $\overline{\mathrm{PS}} ; \overline{\mathrm{AR}} \cong \overline{\mathrm{TS}}$ Prove: $\overline{\mathrm{PA}} / / \overline{\mathrm{RT}}$

4. Given: $\overline{\mathrm{ET}} / / \overline{\mathrm{HY}} ; \overline{\mathrm{ET}} \cong \overline{\mathrm{HY}}$

Prove: A is the midpoint of $\overline{\mathrm{TY}}$

II. Name the theorem or postulate that justifies the following pairs of triangles are congruent. If there is not enough information, write none. Be sure to mark all missing information you used properly.
5. \qquad

6. \qquad

7. \qquad

8. \qquad

9. \qquad

10. \qquad

III. Write the congruent statements and how the triangles are congruent, if they are congruent.
11. $\angle \mathrm{G} \cong \angle \mathrm{W}, \overline{\mathrm{MA}} \cong \overline{\mathrm{HO}}, \angle \mathrm{M} \cong \angle \mathrm{H}$
12. $\angle \mathrm{G} \cong \angle \mathrm{W}, \angle \mathrm{M} \cong \angle \mathrm{H}, \angle \mathrm{A} \cong \angle \mathrm{O}$
13. $\overline{\mathrm{MA}} \cong \overline{\mathrm{HO}}, \overline{\mathrm{GA}} \cong \overline{\mathrm{WO}}, \overline{\mathrm{GM}} \cong \overline{\mathrm{WH}}$
14. $\angle \mathrm{M} \cong \angle \mathrm{H}, \angle \mathrm{A} \cong \angle \mathrm{O}, \overline{\mathrm{MA}} \cong \overline{\mathrm{HO}}$

15. $\overline{\mathrm{GM}} \cong \overline{\mathrm{WH}}, \overline{\mathrm{MA}} \perp \overline{\mathrm{AG}}, \overline{\mathrm{MA}} \cong \overline{\mathrm{HO}}, \overline{\mathrm{HO}} \perp \overline{\mathrm{WO}}$
16. $\angle \mathrm{A} \cong \angle \mathrm{O}, \overline{\mathrm{MA}} \cong \overline{\mathrm{HO}}, \overline{\mathrm{GA}} \cong \overline{\mathrm{WO}}$

IV. Given that $\Delta H I T \cong \Delta T O P$, write an equation and solve for x in each of the following. SHOW YOUR WORK!!

17. $\mathrm{HT}=2 \mathrm{x}+10, \mathrm{TP}=4 \mathrm{x}+6, \mathrm{TO}=6 \mathrm{x}-6$
18. $\mathrm{IT}=4 \mathrm{x}+20, \mathrm{OT}=6 \mathrm{x}, \mathrm{IH}=2 \mathrm{x}+44$

V. Short Answer.

19. $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}, \mathrm{AB}=5 \mathrm{x}+9, \mathrm{BC}=3 \mathrm{x}+15$ and $\mathrm{AC}=7 \mathrm{x}-35$
$\mathrm{x}=$ \qquad
$\mathrm{AB}=$ \qquad Perimeter $=$ \qquad

20. $\mathrm{m} \angle \mathrm{H}=$ \qquad

21. $\mathrm{m} \angle \mathrm{G}=$ \qquad

22. $\mathrm{m} \angle \mathrm{OLE}=$ \qquad

VI. Always (A), Sometimes (S) or Never (N):
23. \qquad An equiangular triangle is isosceles, equilateral and acute.
24. \qquad A scalene triangle is a right triangle.
25. \qquad The sum of the measures of the exterior angles of a triangle is 360 degrees.
26. \qquad An equilateral triangle is isosceles.
27. \qquad An isosceles triangle is scalene.
28. \qquad An equilateral triangle is a right triangle.
29. \qquad CPCTC is used after triangles are congruent.
30. \qquad CPCTC stands for corresponding parts of congruent triangles are corresponding.

VII. Free Response

31. Find the value(s) of x

32. An equilateral triangle has an angle measure of $x^{2}+20$ and a side length of $2 x^{2}$. Find the length of one side.
33. Given a rectangle with 3 of the 4 coordinates $(0,0)(a, 0)$ and $(0, b)$. Draw a graph, label points, and show all work!!!!!
a) Find the $4^{\text {th }}$ coordinate
b) Find the length of the diagonal
34. List and explain all the ways to prove triangles congruent as well as all the ways that DO NOT work.
