| Name | Date | Pd |
|------|------|----|

# 6.1 - 6.5 TEST Review

☐ Use when you get it right all by yourself

 ${m S}$  Use when you did it all by yourself, but made a silly mistake

**H**Use when you could do it alone with a little help from teacher or peer

**G** Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

| CONCEPTS                                  | BASIC       | INTERMEDIATE    | ADVANCED |
|-------------------------------------------|-------------|-----------------|----------|
| Special Segments                          | 1, 2 - 5    | 14 - 16         | 25 - 30  |
| Slope                                     | 1b          |                 |          |
| Point-Slope Form                          | 1c          |                 |          |
| Perpendicular Slope                       | 1d          |                 |          |
| Point of Concurrency                      | 2 - 5       |                 |          |
| Angle & Side Restrictions                 |             | 6 – 9           | 32 - 34  |
| Solving Inequalities                      |             | 6 - 9           | 32 - 34  |
| Simplifying Radicals                      | 10          |                 |          |
| Isosceles Triangles                       |             | 6 - 9           | 32 - 34  |
| Parallel Lines: AIA Thm                   |             | 13              | 34       |
| Midsegment & Midsegment Triangle          | 17 - 24     |                 |          |
| Counterexamples                           |             |                 | 25 - 30  |
| Midpoint Formula                          | 1a          |                 |          |
| Triangle Sides/Angles shortest to longest | 11, 17 - 24 | 12, 14 - 16, 31 | 13       |
| Distance Formula                          | 31          |                 |          |
| Classifying Triangles                     | 31          |                 |          |

| 1. In $\triangle ABC$ , $\overline{AD}$ is a median, and $A(-2,2)$ , $B(2,6)$ , and $C(6,$ |
|--------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------|

A. \_\_\_\_\_ What is the coordinate of point D?

B. \_\_\_\_ What is the slope of  $\overline{AD}$ ?

C. \_\_\_\_\_ Find the equation in point slope form of  $\overline{AD}$ .

D. \_\_\_\_\_ Find the slope of the altitude from vertex C.

#### Match:

| 2. | Circumcenter | Α | Altitude               |
|----|--------------|---|------------------------|
| 3. | Centroid     | В | Angle Bisector         |
| 4. | Orthocenter  | С | Median                 |
| 5. | Incenter     | D | Perpendicular Bisector |

# <u>6.1 - 6.5 TEST Review</u>

#### Solve:

Find restrictions on x.



\_Find the restrictions on x



8. Find x\_\_\_



9. Use triangle inequalities to compare  $\angle 1$ ,  $\angle 2$  and  $\angle 3$ .



\_\_\_\_\_Can you make a triangle out of lengths  $8\sqrt{6}$ ,  $5\sqrt{15}$ , and  $7\sqrt{3}$ ? Why?

\_11. In  $\triangle ABC$  m $\angle A = (3x)^o$  , m $\angle B = (x + 12)^o$  and m  $\angle C = (x + 3)^o$ . List the sides of the triangle from longest to shortest.

12.  $A < 80^{\circ}$ 50° D

List the sides of the whole figure from shortest to longest.

### 6.1 - 6.5 TEST Review

13. m∠1 =

m∠2 =



- 14. Find AB if BD is a median of  $\triangle$ ABC.
- 15. Find BC if AD is an altitude of  $\triangle$  ABC.
- 16. Find m∠ABC if BD is an angle bisector of  $\triangle ABC$ .





## 17 – 24: Use the diagram to the right to find the required values.

LO = 6x + 4, LM = 4x, MP = 3x, and NO = 42 m  $\angle$  LPM =  $52^{\circ}$  m  $\angle$  L =  $44^{\circ}$ 

- 22. LO =\_\_\_\_
- 18. LN =
- 23. LP =\_\_\_\_
- 19. MP = \_\_\_\_\_
- 24.m∠LMP =
- 20. m∠O =\_\_\_\_\_
- 21. m∠N =



Sometimes, Always or Never: Prove an Always, counterexample for Never, and both for Sometimes. Words or pictures are acceptable.

- \_25. A right triangle is isosceles.
- \_26. An isosceles triangle is equilateral.
- \_27. In an obtuse triangle the circumcenter is outside the triangle.
- 28. In an equiangular triangle the centroid is equidistant from the sides.
- \_\_\_\_29. An acute triangle is isosceles.
- 30. The incenter is the center of gravity.

| Name | Date | Pd |
|------|------|----|

#### 6.1 - 6.5 TEST Review

\_\_\_\_\_31. Classify the triangle with coordinates A(4, -2) B(-6, 1) and C(14, 1) as scalene, isosceles, or equilateral. What is the largest angle of the triangle? (show calculations)

\_\_\_\_\_\_32. In  $\triangle ABC$  m $\angle A$  = 49°, m $\angle B$  = 21° and m $\angle C$  = 110°. List the sides of the triangle from longest to shortest.





## **Chapter 6 Test Study Guide:**

- 1) Triangle Inequality Theorem
- 2) Midsegment Triangle Theorem
- 3) Triangle Inequality Theorem
- 4) Special Segments & their special properties
- 5) Special Segments & their special properties
- 6) Triangle Inequality Theorem
- 7) A) Distance formula & Triangle Inequality Theorem
  - B) Midpoint formula & Special Segments
  - C) Perpendicular slope & Special Segments
- 8) Special Segments
- 9) Special Segments & POC's
- 10) POC's
- 11) POC's

- 12) POC's
- 13) POC's
- 14) POC's
- 15) Straw Activity: What makes a triangle work?
- 16) Straw Activity: What makes a triangle work?
- 17) Special Segments
- 18) Special Segments
- 19) Special Segments
- 20) Special Segments
- 21) Special Segment Constructions & POC (watch videos on the website!)