
\qquad Pd \qquad
Chapter 5 White Board Test Review
5.1

Simplify.

$$
\begin{array}{lll}
k^{\prime}\left(k^{4}\right) & \begin{array}{l}
\left(4 w^{5} v\right)\left(6 w^{6} v^{2}\right) \\
k^{1+4}
\end{array} & 24 w^{5+6} v^{i+2}
\end{array}
$$

$$
\begin{gathered}
\left(3 x^{3} y\right)\left(3 x y^{2} z^{4}(3 x y z)\right. \\
\left(3 x^{3} y\right)\left(81 x^{4} y^{8} z^{4}\right)(3 x y z)^{\left(2 x x^{5}\right)(-y)^{4}}\left(2 x y^{5}\right)\left(y^{4}\right) \\
3+4+1 \\
1+8+1
\end{gathered}
$$

Enrichment and Extension

$$
\begin{aligned}
& 2^{n}=4^{3} \\
& 2^{n}=\left(2^{2}\right)^{3} \\
& 2^{n}=2^{6} \\
& n=6
\end{aligned}
$$

5.2

Simplify. No negative exponents.

$$
\begin{gathered}
\left(5^{n}\right)\left(5^{4}\right)=125 \\
5^{n+4}=5^{3} \\
n+y=3 \\
n / 4=-4 \\
n=-1
\end{gathered}
$$

$$
\begin{aligned}
& \left(2^{2 n}\right)^{n}=4^{8} \\
& 2^{n^{2}}=\left(2^{2}\right)^{8}
\end{aligned}
$$

$$
2^{n^{2}}=2^{11}
$$

$$
\begin{aligned}
& \frac{\sqrt[2]{n^{16}}}{\frac{p^{4}}{p}} \\
& \frac{p^{4-1}}{p^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x y^{5+4} \\
& 2 x y^{9} \\
& 3^{2 n}=729 \\
& 3^{2 n}=3^{9}
\end{aligned}
$$

$$
\begin{aligned}
& 8^{n-2}=\sqrt{8} \\
& 8^{n-2}=8^{\frac{1}{2}} \\
& n-z=\frac{1}{2}+2 \\
& +2 \\
& n=\frac{1}{2}+\frac{4}{2}=\sqrt{\frac{5}{2}}
\end{aligned}
$$

Enrichment and Extension: Using the formula $\sqrt{a^{2} \pm b} \approx a \pm \frac{b}{2 a}$ to approximate the answers to the nearest thousandth without using a calculator. Then check your answer with the calculator.

$$
\begin{array}{ll}
\sqrt{10} & \sqrt{104} \\
\approx 3+\frac{1}{100+4} & \approx 10+\frac{4}{20} \\
\approx 3+\frac{1}{12} & \approx 10+\frac{1}{5} \\
\approx 2082 & \approx 10,2
\end{array}
$$

$$
\sqrt{83} \sqrt{81+2}
$$

$$
\approx 9+\frac{2}{18}
$$

$$
\begin{aligned}
& \sqrt{13} \\
& \sqrt{16-3} \\
& \approx 4-\frac{3}{8}
\end{aligned}
$$

$$
\approx 9+\frac{1}{9}
$$

$$
\approx 12-\frac{1}{8}
$$

$$
\approx 9.111
$$

5.3

Describe the transformation of $f(x)=x^{2}$ represented by g.

$$
\begin{aligned}
& g(x)=x^{2}-9 \\
& g(x)=\frac{1}{4} x^{2}+5 \\
& g(x)=\frac{1}{2} x^{2} \\
& g(x)=x^{2}-\frac{1}{2} \\
& 49 U \\
& \text { nay }{ }^{\frac{1}{4} ; ~ 个 5 u ~ V C a \frac{1}{2}} \\
& \psi \frac{1}{2} u \\
& 5.4
\end{aligned}
$$

Determine if the given numbers could be the lengths of the sides of a right triangle. $a^{2}+b^{2}=c^{2}$

$$
\begin{aligned}
& a=9, b=40, c=41 \\
& 9^{2}+40^{2} \\
& 41^{2} \\
& a=18, b=24, c=30 \\
& a=8, b=15, c=17 \\
& 18^{2}+24^{2}-30^{2} \\
& 8^{2}+15^{2}-17^{2} \\
& 81+1600 \equiv 1681 \quad 324+576 \equiv 900 \quad 64+225 \equiv 289
\end{aligned}
$$

Solve the equations. Check your solution.

Enrichment and Extension: Using the graphing calculator to solve radical equations or inequalities.
Round your answer to three decimal places when necessary. (HINT: make the equation =0 then find the zeros.)

$$
\begin{gathered}
\frac{\sqrt{x+25}=2}{-2}-4 \\
\sqrt{x+25}-2=0 \\
y_{1}=\sqrt{x+25}-2 \\
\text { zero: }(-21,0) \\
x=-21
\end{gathered}
$$

$$
\frac{\sqrt{x+1}=5-\sqrt{x+6}}{\sqrt{x+1}-\sqrt{x+1}}
$$

$$
0=5-\sqrt{x+6}-\sqrt{x+1}
$$

$$
y_{1}=5-\sqrt{x+6}-\sqrt{x+1}
$$

Zeno: $(3,0)$

$$
\begin{gathered}
\sqrt[3]{x+5}=2 \sqrt[3]{2 x+6} \\
-\sqrt[3]{x+5}-\sqrt[3]{x+5} \\
0=2 \sqrt[3]{2 x+6}-\sqrt[3]{x+5} \\
y=2 \sqrt[3]{2 x+6}-\sqrt[3]{x+5} \\
\text { zero: }(-2.867,0) \\
x=-2.867
\end{gathered}
$$

Simplify.

$(a b)^{4}$
$a^{4} b^{4}$
$a^{2}-6 a b+a b-6 b^{2}$
$a^{2}-5 a b-6 b^{2}$

Perform the given operation or composition. State the domain too.
$D:[0, \infty)$

$$
D=(0, \infty)
$$

$$
x=16: 15(16)^{\frac{9}{4}}=7680
$$

$$
f(x)=3 x-5 x^{2}-x^{3}, \quad g(x)=6 x^{2}-4 x
$$

$$
X=16: \frac{3(16)^{\frac{2}{4}}}{5}=\frac{384}{5} \approx 76.8
$$

$$
3\left(6 x^{2}-4 x\right)-5\left(6 x^{2}-4 x\right)^{2}-\left(6 x^{2}-4 x\right)^{3}
$$

$$
6\left(3 x-5 x^{2}-x^{3}\right)^{2}-4\left(3 x-5 x^{2}-x^{3}\right)
$$

$$
\begin{aligned}
& f(x)=\sqrt[3]{4 x}, \quad g(x)=-9 \sqrt[3]{4 x}, \quad x=-2 \\
& (f+g)(x)= \\
& \sqrt[3]{4 x}+(-9 \sqrt[3]{4 x}) \\
& -8 \sqrt[3]{4 x} \\
& D:(-\infty, \infty) \\
& x=-2:-8 \sqrt[3]{4(-2)}=\sqrt{16} \\
& \begin{array}{l}
(f-g)(x)= \\
\sqrt[3]{4 x}-(-9 \sqrt[3]{4 x})=10 \sqrt[3]{4 x}
\end{array} \\
& D:(-\infty, \infty) \\
& X=-2: 10 \sqrt[3]{4(-2)}=-20 \\
& f(x)=3 x^{2}, g(x)=5 x^{\frac{1}{4}}, \quad x=16 \\
& \begin{array}{l}
(\mathrm{f} /(x)= \\
\left(3 x^{2}\right)\left(5 x^{\frac{1}{4}}\right)=15 x^{2+\frac{1}{4}}=15 x^{\frac{9}{4}}\left(\frac{1}{9}\right)(x)=\frac{3 x^{2}}{5 x^{\frac{1}{4}}}=\frac{3 x^{2-\frac{1}{4}}}{5}=\frac{3 x^{\frac{7}{4}}}{5}
\end{array}
\end{aligned}
$$

5.6

Solve the literal equation for \mathbf{y}.

Find the inverse of the function.

$$
\frac{\frac{1}{4} x=y^{-1}}{\frac{x+1}{4}=\frac{4}{4}} \begin{aligned}
& \frac{1}{4} x+\frac{1}{4}=y
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=.5 x-5 \\
& x=\frac{1}{2} y-5 \\
& +5
\end{aligned}
$$

$$
2 \cdot x+5=\frac{1}{2} y \cdot 2
$$

$$
\begin{aligned}
& 5 \cdot x+2=\frac{1}{5} y \cdot 5 \\
& \sqrt{5 x+10}=y^{-1}
\end{aligned}
$$

$$
5 x+10=y^{-1}
$$

Enrichment and Extension: Find the inverse of the function by completing the square.

$$
2 x+10=y^{-1}{ }^{5}
$$

$$
\begin{aligned}
& f(x)=x^{2}-2 x \\
& f(x)=x^{2}+8 x \\
& f(x)=x^{2}-8 x+12
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
17+x=y^{2}-2 y+ \\
\left(\frac{-2}{2}\right)^{2}=(-1)^{2}=1
\end{array} \\
& \sqrt{1+x}=\sqrt{(y-1)^{2}} \\
& \begin{array}{c}
\pm \sqrt{1+x}=y-1 \\
+1
\end{array} \\
& \text { II } \left.\left.\left(\frac{8}{2}\right)^{2}=(4)^{2} \quad x-12+16\right]=y^{2}-8 x+116 x+12=y^{2}-4 y+14\right]
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{2}-4 x+12 \\
& f(x)=x^{2}-2 x \\
& x=y^{2}+8 y
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x=x^{2}=4 x+12 \\
x=12 y^{2}-4 y-12
\end{array} \\
& \pm \sqrt{x+16}=y+4 \quad \sqrt{x+4}=\sqrt{(y-4)^{2}} \quad \sqrt{x-8}=\sqrt{(y-2)^{2}} \\
& \left.-4 \pm \sqrt{x+16}=\left.y^{-1}\right|^{ \pm} \begin{array}{c}
x+4 \\
+4
\end{array}\right) y+4 \pm \\
& 4 \pm \sqrt{x+4}=y^{-1} \\
& 2 \pm \sqrt{x-8}=y^{-1}
\end{aligned}
$$

