<u>Chapter 2 Proof Reasoning List</u> All converse statements would also be true.

12. Comp. Angles 13. Def of Linear Pair 14. Equal and Congruent 15. Def. of Midpoint 16. Def of \angle Bisector 17. Def of Seg. Bisector 18. Distribution POE If $2 \angle$ s are comp., then they add to 90° . If two \angle s form a linear pair, then supp. (180°) If = then \cong . If $2 \angle$ s are comp., then they add to 90° . If two \angle s form a linear pair, then supp. (180°) If = then \cong . If $2 \angle$ s are comp., then they add to 90° . If $2 \angle$ s are comp., then supp. (180°) If $2 \angle$ s are comp., then supp. ($2 \angle$ s seg.) If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg. If $2 \angle$ s bisected, then $2 \angle$ s are $2 \angle$ s seg. If $2 \angle$ s bisected, then $2 \angle$ s are $2 \angle$ s seg. If $2 \angle$ s bisected seg., then seg. Is split into $2 \angle$ s seg. If $2 \angle$ s are comp., then they add to $2 \angle$ s seg.	13. Def of Linear Pair 14. Equal and Congruent 15. Def. of Midpoint 16. Def of ∠ Bisector 17. Def of Seg. Bisector 18. Distribution POE 19. Multiplication/Division POE 20. Communitive POE	If two \angle s form a linear pair, then supp. (180°) If = then \cong . If midpoint, then seg is split into $2 \cong$ seg. If \angle is bisected, then \angle s are \cong . If bisected seg., then seg. Is split into $2 \cong$ seg. If $2(x + 7)$, then $2x + 14$. If $\frac{1}{4}x = 10$, then $x = 40$. If $m \angle 2 + m \angle 1 = 180^\circ$, then $m \angle 1 + m \angle 2 = 180^\circ$
---	---	--

Chapter 3 Parallel Lines Proof Reasoning List All converse statements are also true.

22. AlA's R ≅	If lines are $//$, then AIA R \cong .
23. AEA's R ≅	If lines are \parallel , then AEA R \cong .
24. Corresponding ∠s R ≅	If lines are \parallel , then corresponding \angle s R \cong .
25. SSIA R ≅	If lines are \parallel , then SSIA R \cong .
26. SSEA R ≅	If lines are ∥, then SSEA R ≅.
27. Perp. Transversal Thm	If line perp. to 1 or 2 // lines, then perp to other.
28. Transitive Property of // Lines	If $2 \leftrightarrow s R \parallel$ to the same \leftrightarrow , then $\parallel 2$ each other
29. Linear Pair Perpendicular Thm	If $2 \leftrightarrow s$ intersect to form a linear pair of $\cong \angle$,
	then $\leftrightarrow s$ R perp.
$30. \leftrightarrow s$ Perp. to a Transversal Thm	If $2 \leftrightarrow s$ are perp. to the same lines, then they
	are // to each other.
31. Comp. \cong ∠s	If 2 \angle s are comp. to the same, then \angle s R \cong .
32. Supp. \cong ∠s	If 2 \angle s are supp. to the same , then \angle s R \cong .