Chapter 5 Test Review

I. 5.1

Evaluate the expression without using a calculator.

1.
$$8^{\frac{7}{3}}$$

$$2.9^{\frac{5}{2}}$$

3.
$$(-27)^{-\frac{2}{3}}$$

Find the real solution(s) of the equation. Round your answer to the thousandths place when appropriate.

$$4. x^5 + 17 = 35$$

$$5.7x^3 = 189$$

6.
$$(x + 8)^4 = 16$$

II. 5.2

Simplify the expression completely.

1.
$$\left(\frac{6^{\frac{1}{5}}}{6^{\frac{2}{5}}}\right)^3$$

3.
$$\frac{1}{2-\sqrt[2]{8}}$$

$$4.4\sqrt[5]{8} + 3\sqrt[5]{8}$$

5.
$$2\sqrt{48} - \sqrt{3}$$

$$6. \left(5^{\frac{2}{3}} \cdot 2^{\frac{3}{2}}\right)^{\frac{1}{2}}$$

Simplify the expression. Restrict the domain when necessary.

7.
$$\sqrt[3]{125w^9}$$

$$8. \, \frac{2^{\frac{1}{4}} y^{\frac{5}{4}}}{6y}$$

9.
$$\sqrt{10a^5} - a^2\sqrt{40a}$$

III. 5.3

<u>Describe the transformation of f represented by g. Then graph each function.</u>

1.
$$f(x) = \sqrt{x}, g(x) = -2\sqrt{x}$$

2.
$$f(x) = \sqrt[3]{x}, g(x) = \sqrt[3]{-x} - 6$$

IV. 5.4

Solve the equation. Check your solution for extraneous solutions. Restrict the domain when necessary.

1.
$$4\sqrt[3]{2x+1} = 20$$

1.
$$4\sqrt[3]{2x+1} = 20$$
 2. $\sqrt{4x-4} = \sqrt{6x-1} + 1$ 3. $(-3x)^{\frac{2}{3}} = 36$

$$3. \left(-3x\right)^{\frac{2}{3}} = 36$$

Solve the inequality. Remember when the sign flips.

$$4. -5\sqrt{x} - 3 > 17$$

$$4. -5\sqrt{x} - 3 > 17$$
 5. $2\sqrt{x+7} \le 32$

$$6. -\sqrt[3]{x-2} \ge 4$$

7. In a wave pool, the wave speeds in meters per second can be modeled by $s(d) = \sqrt{9.8d}$, where d is the depth in meters of the water in the wave pool. Estimate the depth of the water when the wave speed is 200 meters per second.

V. 5.5

Perform the given operations, state the domain, and then evaluate given an x value.

1. Let $f(x) = 5\sqrt{2-x}$ and $g(x) = -2\sqrt[3]{2-x}$. Find (fg)(x) and $\left(\frac{f}{g}\right)(x)$. Domain. Evaluate when x = 2.

2. Let $f(x) = 3x^2 - 1$ and g(x) = x - 5. Find (f + g)(x) and (f - g)(x). Domain. Evaluate for x = -5.

VI. 5.6

Find the inverse of the function. Then graph the function and its inverse.

1.
$$f(x) = -\frac{1}{2}x + 10$$

$$2. f(x) = x^2 + 8, (0, \infty)$$

3.
$$f(x) = -x^3 - 9$$

$$4. f(x) = 3\sqrt{x} + 5$$

<u>Determine whether the functions are inverse functions.</u>

5.
$$f(x) = 4(x-11)^2, g(x) = \frac{1}{4}(x+11)^2$$

6.
$$f(x) = -2x + 6$$
, $g(x) = -\frac{1}{2}x + 3$

7. On a certain day, the function that gives U. S. dollars in terms of British pounds is d=1.587p, where d represents U. S. dollars and p represents British pounds. Find the inverse function. Then find the number of British pounds equivalent to 100 U.S. dollars.