Name ____

Domain Restriction CYU

Use when you get it right all by yourself				
${m {\it S}}$ Use when you did it all by yourself, but made a silly mistake				
\emph{H} Use when you could do it alone with a little help from teacher or pee				
$m{ extsf{G}}$ Use when you completed the problem in a group				
$oldsymbol{X}$ Use when a question was attempted but wrong (get help)				
NUse when a question was not even attempted				
CONCEPTS	BASIC	INTERMEDIATE		
main restriction	1 / 0	2.2		

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Determining the domain restriction	1, 4, 9	2, 3	5 - 8, 10 - 15
Denominators with x	2, 5	8, 12	6, 11, 13, 15
Radicals with x	3, 4	6, 7, 11, 14	13, 15
Combination of denominator & radical with an x			6, 11, 13, 15

<u>REMINDER</u>: 3 rules when domain restriction is necessary.

- Denominators cannot equal zero. So, set the denominator ≠ 0 and solve. If a quadratic or higher degreed function factor first and set each factor ≠ 0. It can be more than one number that is restricted.
- 2. Since the even root of a negative number creates imaginary numbers we need to ensure that any even rooted radicand is \geq 0. This guarantees any radicand will not be negative.
- 3. This situation is a combination of the first two rules. When the first two rules are combined you cannot have a negative under a radical and you cannot have a value of zero in the denominator. So, we combine the two methods and set the denominator > 0 because it cannot be negative and it can no longer = 0.

Determine the domain for each function provided. Remember the rules above as well as real-world restrictions when applicable.

1. $f(x) = 3x^2 - 4$ 2. $h(x) = \frac{2x+1}{x-1}$

3.
$$g(x) = \sqrt{2x-5}$$
 4. $z(x) = \sqrt[3]{10x-2}$

5.
$$w(x) = \frac{3}{x} + \frac{3}{x-1} + \frac{3}{x+1}$$
 6. $m(x) = \frac{\sqrt{1-x}}{\sqrt{1+x}}$

7.
$$n(x) = \sqrt{x^2 - 5x + 6}$$

8.
$$c(x) = \frac{1}{x^2 - 8x + 12}$$

9.
$$v(t) = 1000 - \frac{1}{2}(-32.2)t^2$$

10. In the previous problem, if the function represents real-time velocity of an object t seconds after launch, how does that change the domain restriction?

11.
$$j(x) = \sqrt{\frac{x-2}{x+3}}$$
 12. $f(x) = \frac{(2x+3)(x-3)}{(2x+3)}$

13.
$$k(x) = \sqrt[5]{\frac{x}{x-1}}$$
 14. $q(x) = \sqrt{x^3 + 4x^2 - 4x - 16}$

15.
$$p(x) = \sqrt{\frac{x^2 - 1}{x^2 - 4}}$$

CYU Reflection: How far can you go: basic, intermediate, or advanced? Rate your mastery level! How confident are you with the skills this CYU covered? Circle the score you would give yourself. 1 2 3 4 5 6 7 8 Basic Intermediate Advanced Solved ALL!