Final Exam all multiple choice questions. From chapters 1 – 4, including Matrices.

1. Solve |y + 2| = 6.

2. If
$$f(x) = \frac{x^2 - 4x + 5}{x + 7}$$
, find $f(-3)$.

3. Solve the following system: $\begin{aligned} &2x + 3y = 8\\ &3x - 8y = -13 \end{aligned}$

4. Solve the system:
$$x + 2y - 3z = 50$$

 $2x + y + 2z = 3$
 $2x - 5y + 4z = -79$

5 – 6: Simplify the following:

- 5. (8-3i)(6+5i) 6. $\frac{6+i}{3-i}$
- 7. Divide: $(4x^3 2x^2 + 8x 8)/(2x + 1)$
- 8. Solve the following system: 2x 3y = 55y + x = 12.
- 9. Graph $\frac{1}{2}|x| 3 = y$.
- **10.** Factor completely: $y^3 y^2 4y + 4$.
- 11. Factor completely: $4x^2 4x 15$.

12. Simplify:
$$\frac{4\sqrt{24}}{2\sqrt{8}}$$
.

13 – 17: Solve and Graph the following quadratics: (intercepts, vertex, max/min, domain/range, Axis of Symmetry)

13. $2x^2 + 32 = 0$ **14.** $2x^2 - 5x - 3 = 0$ **15.** $(x + 1)^2 - 2 = 0$

16. $x^2 - 6x = 1$ **17.** $-4x = 2 - 7x^2$

18. Describe the roots of the equation based on the discriminant $2x^2 - 7x = -9$.

- 19. Find a quadratic equation with roots 4 and -5.
- 20. Write the polynomial function whose zeros include -2 and 4-3i.
- 21. Simplify $(3 4\sqrt{5})(4 \sqrt{2})$.
- 22. Simplify $-\sqrt{8} + 2\sqrt{96 + 5\sqrt{4}}$
- 23. Solve and graph (on a number line): $|x + 1| \ge 4$
- 24. State the possible number of positive real zeros for $f(x) = 3x^4 2x^3 5x^2 + 6x 2$.

25. State the possible number of negative real zeros for $f(x) = 2x^4 - 5x^3 - 3x^2 + x + 6$.

26. Find 2f(x) - f(x-1) for $f(x) = 3x^2 + 5$.

- 27. Find p(-2) for $p(x) = x^2 + 3x 1$.
- 28. Find the remainder for $(x^3 + 2x^2 4x 5) \div (x 2)$.
- 29. Factor $x^3 + 2x^2 5x 6$ by using synthetic division.

- 30. State all the possible rational zeros for $f(x) = 2x^3 2x^2 + 5x 8$.
- 31. Solve the equation over the set of complex numbers. $x^4 12x^2 45 = 0$

32. Graph a function with an odd degree and positive leading coefficient.

33. Graph a function with an even degree and negative leading coefficient.

34. Find all of the zeros of $h(x) = x^3 - 3x^2 + 9x - 7$ if one of the zeros is 1. State any multiplicities, if any.

- 35. Graph the solution to $\left|\frac{1}{4}x+1\right| \ge 3$.
- 36. If -3x + y = 15 and -2x + y = 8, then what does *xy* equal?
- 37. Simplify $(7x 3x^2 + 5x^3) (3x^3 4x^2 + 13x)$.
- 38. Graph: $y = \frac{1}{2}|x-3|+2$.
- 39. Graph the solution set of the system: $\begin{cases} x+4y>8\\ x-y\leq 2 \end{cases}$.
- 40. Solve by completing the square: $4x^2 + 2x 1 = 0$.
- 41. Find f(-2), given $f(x) = -x^3 + 4x^2 + 6x 20$.
- 42. Multiply: (-1+8i)(-4-2i).

43. Simplify: $(6x-2)^2$.

44. Divide using 2 methods: $(3x^3 - 2x^2 - 10x - 2) \div (x - 2)$.

45. If (x+2) is a factor, find the remaining factors for $3x^3 + 22x^2 + 37x + 10$.

46. Factor using SOAP: $x^3 - 27$ and $8x^3 + 125$.

47. Identify the domain and range of the **quadratic** parent function.

48. Factor completely: $12a^2 + 5ab - 2b^2$.

49. Linear Regression:	Studying Time (hrs)	Grade earned on Test (%)			
	1	70			
	1.5	73			
	2	81			
	2.7	89			
	3	92			
	3.25	90			
	4	100			

What grade might I expect to make on the next test if I study for 2.5 hours? If I earned a 95 on the test, approximately how many hours would I have studied? Why is this data linear?

$$6a - 2b = 18$$

50. $3b + 5c = -34$ Find *a*, *b* and *c* using substitution or elimination.
 $a + 6c = -28$

51. The height, h, in feet of an object above the ground is given by $h = -16t^2 + 64t + 190$, $t \ge 0$ where t is the time in seconds. Find the time it takes the object to strike the ground and find the maximum height of the object.

- 52. Simplify: $(2a-b)^4$.
- 53. Factor: $32a^6 4b^3$.

54 – 57: Use matrices A – E below.

 $A = \begin{bmatrix} 3 & 1 \\ -5 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} -6 & 0 \\ 4 & 3 \end{bmatrix} \qquad D = \begin{bmatrix} 7 & -2 & 9 \\ -4 & 1 & -8 \end{bmatrix} \qquad E = \begin{bmatrix} 7 & 2 & 9 \\ 4 & 1 & 8 \end{bmatrix}$ 54. Find 2C - B 55. Find A · E 56. Find B² 57. Find K so that $D - 2K = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 1 & -4 \end{bmatrix}$ 58. Solve for x, y and z given: $\begin{bmatrix} x^2 & y+z \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & -7 \\ 2z-y & 1 \end{bmatrix}$ 59. Find $\begin{vmatrix} 2 & -1 & -3 \\ 4 & 0 & 1 \\ -2 & -3 & 5 \end{vmatrix}$ 60. Solve for x: $\begin{vmatrix} 8 & 3 & -1 \\ 2 & 1 & -2 \\ 4 & 1 & x \end{vmatrix} = 14$ 61. X = 3A - 2B62. 2X + 3A = B

63 – 64: Solve the following equations using inverse matrices:

 $63. \begin{bmatrix} 5 & 6 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \end{bmatrix} \qquad \qquad 64. \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 10 \\ -3 \end{bmatrix} = \begin{bmatrix} -8 \\ 5 \end{bmatrix}$

65 – 68: Find the inverse of the given matrix:

- $65. \begin{bmatrix} 7 & 3 \\ 5 & 2 \end{bmatrix} 66. \begin{bmatrix} 2 & 3 \\ 7 & 11 \end{bmatrix} 67. \begin{bmatrix} 8 & -3 \\ 4 & -2 \end{bmatrix}$
- 68. Decide whether the matrices are inverses of each other: $\begin{bmatrix} 1 & -1 & -3 \\ 5 & 2 & 1 \\ -3 & -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 3 & 5 \\ -3 & -9 & -16 \\ 1 & 4 & 7 \end{bmatrix}$

69 – 71: Write the product as a single matrix:

$$69. \begin{bmatrix} 1 & 0 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 3 & 2 \end{bmatrix} \qquad 70. \begin{bmatrix} 6 & 6 & 0 \\ 1 & -1 & 5 \end{bmatrix} \begin{bmatrix} -6 & 1 & 4 \\ 5 & -2 & 1 \\ 3 & -8 & 0 \end{bmatrix} \qquad 71. \begin{bmatrix} 10 & 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \\ 3 \end{bmatrix}$$

72 – 76: Perform the matrix operation(s):

$$72. \begin{bmatrix} 0 & 1 & -5 \\ 4 & 1 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 3 & 11 \\ -2 & 8 & 3 \end{bmatrix}$$
$$73. \begin{bmatrix} 5 & 1 & 10 \\ -1 & 0 & 0 \\ 2 & 3 & 4 \end{bmatrix} - \begin{bmatrix} 6 & 7 & 3 \\ 0 & 14 & 6 \\ 1 & -1 & 2 \end{bmatrix}$$

	6	10	2	1]		4	6	-1]	
74.	9	6 +	0	7	75. 3	10	-5	2	
	4	$\begin{bmatrix} 10 \\ 6 \\ -1 \end{bmatrix} +$	4	7		2	11	1	

 $76. -2\left(\begin{bmatrix} 6 & 4 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 5 & 10 \\ 1 & 3 \end{bmatrix}\right)$

77. If ΔABC is defined by the matrix P = [4 3 1] 1 5 2], what are the coordinates of the triangle after it has been rotated ?
a. 90 degrees counter-clockwise? e. Rotated 180 degrees?
b. 90 degrees clockwise? f. Dilated by a factor of 3?
c. Reflected over the *x*-axis? g. Translated 2 units to the left and 5 units up?
d. Reflected over the *y*-axis? h. Reflected over the *x*-axis & dilated by a factor of ½?

78-85: Graph the following functions, state the domain and range and all transformations from the function's parent function:

- 78. f(x) = |x 2| + 3
- 79. g(x) = -2|x| 7
- 80. $g(x) = 3(x+2)^2 1$
- 81. $g(x) = -(2x)^2$
- 82. $g(x) = -2x^3 + 5$
- 83. $h(x) = \frac{1}{3}x^3 2$
- 84. $h(x) = -\frac{5}{2}(x+2)^2 4$ 85. $g(x) = \left(\frac{3}{4}x - 4\right)^3$