	. 1	
Name	Key	1

Date

Pd

6.54 ft

GEO Ch. 11 Test Review

11.1 Circumference and Arc Length

The arc length of \widehat{QR} is 6.54 feet. Find the radius of $\widehat{\bigcirc}P$.

$$\frac{\text{Arc length of } \widehat{QR}}{2\pi r} = \frac{m\widehat{QR}}{360^{\circ}}$$

Formula for arc length

$$\frac{6.54}{2\pi r} = \frac{75^{\circ}}{360^{\circ}}$$

Substitute.

$$6.54(360) = 75(2\pi r)$$

= 94.24 ft

Cross Products Property

Solve for r.

Find the indicated measure.

1. diameter of $\bigcirc P$

2. circumference of OF

3. arc length of \widehat{AB}

× = 211/(3)

G 35X=1980 5.5 cm H (X-51057)

X= 36

4. A mountain bike tire has a diameter of 26 inches. To the nearest foot, how far does the 26.093in tire travel when it makes 32 revolutions?

 $D = C \cdot \# \text{ rev} \Rightarrow 2 \text{ len} (32) \approx 2 \text{ le } 13.805 \text{ m}$ Areas of Circles and Sectors $\boxed{228 \text{ ft}} = 217.8 \text{ le } 12 \text{ le$

C=1rd = 2len

Find the area of sector ADB.

2218+

Use a calculator.

86

Area of sector $ADB = \frac{m\widehat{AB}}{360^{\circ}} \cdot \pi r^2$ Formula for area of a sector $= \frac{80^{\circ}}{360^{\circ}} \cdot \pi \cdot 10^2$ Substitute.

10 m 80°

➤ The area of sector ADB is about 69.81 square meters.

Find the area of the blue shaded region.

5.

6

340 (m/93)

in2 2 169.646in2

= 6(4)- = 17.717in

50A=10054.8 A=201.094ft2

11.3 **Areas of Polygons**

A regular hexagon is inscribed in $\bigcirc H$. Find (a) m \(EHG, \) and (b) the area of the hexagon.

a. $\angle FHE$ is a central angle, so $m\angle FHE = \frac{360^{\circ}}{6} = 60^{\circ}$. Apothem \overline{GH} bisects $\angle FHE$.

The area is
$$A = \frac{1}{2}a \cdot ns = \frac{1}{2}(8\sqrt{3})(6)(16) \approx 665.1$$
 square units.

Find the area of the kite or rhombus.

10.

Find the area of the regular polygon. 12. 40

360

11.

2201.195 u2

36

Three-Dimensional Figures 11.4

Sketch the solid produced by rotating the figure around the given axis. Then identify and describe the solid.

The solid is a cylinder with a height of 8 and a radius of 3.

Sketch the solid produced by rotating the figure around the given axis. Then identify and describe the solid.

15.

cone ht: 9 u Radins: Su 16.

17.

ice cream cone cone w/ hemiphere r=84

Describe the cross section formed by the intersection of the plane and the solid.

18.

rectangle

11.5 Volumes of Prisms and Cylinders

Find the volume of the triangular prism.

The area of a base is $B = \frac{1}{2}(6)(8) = 24$ in.² and the height is h = 5 in.

$$V = Bh$$

Formula for volume of a prism

$$= 24(5)$$

Substitute.

Simplify.

The volume is 120 cubic inches.

Find the volume of the solid.

21.

$$V = lwh$$

= (1.5)(2.1)(3.6)
= (1.34 m³)

22.

$$V=11r^{2}h$$

= $11(2)^{2}(8)$
= 32.7 mm^{3}
 $\approx 100.53 \text{ mm}^{3}$

23.

$$V = (\frac{1}{2}aP)h$$

= $\frac{1}{2}(\tan 54)(2.5)(4)$
= $20 + \tan 54 \text{ yd}^3$
 $\approx 27.528 \text{ yd}^3$

11.6 **Volumes of Pyramids**

Find the volume of the pyramid.

$$V = \frac{1}{3}Bh$$

Formula for volume of a pyramid

$$=\frac{1}{3}(\frac{1}{2} \cdot 5 \cdot 8)(12)$$

Substitute.

Simplify.

The volume is 80 cubic meters.

24.

26.

12 m

$$(\pm bh)(h)$$
 $= \frac{1}{3}($
 $(15)(8))(20)$ $= 30$

Surface Areas and Volumes of Cones

Find the (a) surface area and (b) volume of the cone.

a.
$$S = \pi r^2 + \pi r \ell$$

Formula for surface area of a cone

$$= \pi \cdot 5^2 + \pi(5)(13)$$

Substitute.

$$=90\pi$$

Simplify.

≈ 282.74

Use a calculator.

The surface area is 90π , or about 282.74 square centimeters.

b.
$$V = \frac{1}{3}\pi r^2 h$$

Formula for volume of a cone

$$=\frac{1}{5}\pi \cdot 5^2 \cdot 12$$

Substitute.

$$= 100\pi$$

Simplify.

Use a calculator.

The volume is 100π , or about 314.16 cubic centimeters.

32. A cone with a diameter of 16 centimeters has a volume of 320π cubic centimeters. Find the height of the cone.

 $V = 320 \text{ cm}^3$ $V = \frac{1}{3} \text{ m}^2 \text{h}$ $320 \text{ m} = \frac{1}{3} \text{ m}^2 \text{h}$

Surface Areas and Volumes of Spheres 11.8

Find the (a) surface area and (b) volume of the sphere.

a. $S = 4\pi r^2$

Formula for surface area of a sphere

 $=4\pi(18)^2$

Substitute 18 for r.

 $= 1296\pi$

Simplify.

≈ 4071.50

Use a calculator.

The surface area is 1296π , or about 4071.50 square inches. b. $V = \frac{4}{3} \pi r^3$

Formula for volume of a sphere

 $=\frac{4}{5}\pi(18)^3$

Substitute 18 for r.

 $= 7776\pi$

Simplify.

≈ 24,429.02

Use a calculator.

The volume is 7776π , or about 24,429.02 cubic inches.

Find the surface area and the volume of the sphere.

33.

34.

18 in.

36. The shape of Mercury can be approximated by a sphere with a diameter of 4880 kilometers. r= 2440 Km Find the surface area and the volume of Mercury.

= 41 (2440)2

≈74.8 million 1cm²

2 60.8 billion Km

37. A solid is composed of a cube with a side length of 6 meters and a hemisphere with a diameter of 6 meters. Find the volume of the composite solid.

