Name \qquad Date \qquad PD \qquad

Chapter 1 Geometry Basics Concept Rubric Evaluation

Use the test review problems to help you know where you are prior to the quiz and test. Use the notation below to help you truly understand where you need to focus to increase your learning and understanding. THIS IS DUE BEFORE THE TEST, filled in. The numbers to the problems correspond from the chart to the review.
\square Use when you get it right all by yourself
SUse when you did it all by yourself, but made a silly mistake HUse when you could do it alone with a little help from teacher or peen

G Use when you completed the problem in a group X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Name points, lines, \& planes.	$1,2,3,15$	12,23	
 rays.	4,33	44	41,43
Collinear \& Coplanar	$5-9,17,18$	10,11	20,21
Vocab: between, space	16,19		42
Sketch intersections of lines \& planes.	13,14	22	(
Compute distance on a number line.	16	$48,49,50,51$	Subtracting the big segments to get smaller segments when variables are involved.
Segment addition postulate.	Adding to the small segment to get bigger.	$27 b$	
Find segment length using midpoints.			

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Find segment bisectors.	27b		
Midpoint formula.	27a		28
Distance formula	30		
Find perimeters of polygons.	29, 30		
Find areas of polygons.	30		
Name angles.	31	44	
Measure angles.	Reading an already labeled diagram.	43	Using a protractor to measure an angle.
Identify congruent angles.	Reading an already labeled diagram.	43	Using a protractor to measure an angle.
Angle Addition Postulate	46	43	41
Bisect angles.	33	Identify one and use that definition to solve for a missing variable.	Through construction with protractor, ruler, \& compass.
Identify complementary angles.	35, 36	32, 37	38, 40
Identify supplementary angles.	35, 36	24, 37	38, 39, 40
Identify linear pairs.	31		42
Identify vertical angles.	34	25, 47	42
Identify adjacent angles.	True or false a diagram contains adjacent angles.	26	Creating adjacent angles and using knowledge to help solve for missing information.

1-18: True/False: Write out the entire word. Remember definition always trumps the diagram provided.
\qquad 1. Plane P contains $\overleftrightarrow{X J}$.
\qquad 2. Plane P contains j.
\leftrightarrow
\qquad 3. $D C$ lies in plane P.
\qquad 4. Another name for AC is $\overleftrightarrow{C B}$
\qquad 5. A, B, and C are noncollinear.
\qquad 6. A, B, C and D are coplanar.
\qquad 7. D and A are collinear.

\qquad 8. C and X are collinear.
\qquad 9. A, B, and D are collinear.
\qquad 10. A, D, and X are not coplanar.
\qquad 11. X, A, B, and C are coplanar.
\qquad 12. Every plane which contains A and B must contain C.
\qquad 13. Line j intersects $\overleftrightarrow{\text { DC }}$.
14. The plane ABX intersects P in $\overleftrightarrow{\mathrm{AC}}$.
\qquad \leftrightarrow
15. AB contains D.
\qquad 16. X is between D and C.
\qquad 17. D, B, and X are coplanar
\leftrightarrow
\qquad 18. AB and X are coplanar.

19-26: Sometimes(s)/Always(A)/Never(N) Draw out examples to prove it right or wrong.

\qquad 19. Space is the set of all points.
20. If three points are collinear, then they lie in exactly one plane.
21. If three points are collinear, then they are coplanar.
22. If two planes intersect, then their intersection is a line.
23. Opposite rays make a line.
24. Supplementary angles are linear.
25. Vertical angles are adjacent.
26. Adjacent angles are congruent.

27-30: Free Response: Show all work for full credit and to show comprehension of the concept.
27. The coordinates of the endpoints of a diameter of a circle are $(5,8)$ and $(-7,2)$.
a. Find the coordinates of the center.
b. How long is the radius?
28. Given the three points X, Y, and Z , and Y is the midpoint of $\overline{X Z}$. Find the coordinates of the third point. $X(4,3), Y(-1,5), Z(?, ?)$ (DRAW IT OUT)
29. Find the perimeter of $\triangle A B C$ if $A(7,-4), B(-1,2), C(5,-6)$. Show all work.
30. Use the distance formula to find the perimeter and area of the triangle with vertices at $A(3,-2)$, $B(-3,7)$, and $C(-9,3)$.

31 - 34: Use the diagram to the right to answer the following.
31. Name two angles that form a linear pair.
32. Name the compliment to $\angle E B D$.

33. If $\mathrm{m} \angle \mathrm{FBE}=\mathrm{m} \angle \mathrm{DBE}$ then what is ray EB ?
34. Name two vertical angles.

35-37: Give the measure of the complement and supplement of each angle, if possible.
35. $\mathrm{m} \angle \mathrm{A}=60^{\circ} \quad \mathrm{C}=\quad \mathrm{S}=$
36. $\mathrm{m} \angle \mathrm{C}=142^{\circ}$
$\mathrm{C}=$
$S=$
37. $\mathrm{m} \angle \mathrm{T}=(30-2 \mathrm{x})^{0} \quad \mathrm{C}=\quad \mathrm{S}=$

38-43: Set up an equation and solve the following.

38. The supplement of an angle is 36° less than twice the supplement of the complement of the angle.

Find the measure of the supplement.
39. The measure of the supplement of an angle is 30 more than twice the measure of the angle. Find the measure of the angles.
40. The complement of an angle is 280 less than three times the angle's supplement. Find the measure of the supplement.
41. Suppose a ray divides 105° angle into two angles where one is 5° less than four times the other. What are the measures of the two angles?
42. Two lines intersect so that $\angle 1 \& \angle 3$ are vertical angles, $\angle 2 \& \angle 4$ are vertical angles, and $\angle 1 \&$ $\angle 2$ are a linear pair. If $m \angle 2=125 / 5-4 x ; m \angle 4=2.5 x+12$, then solve for x and find the measure of all the angles. (DRAW DIAGRAM FIRST)
43. Ray FC bisects $\angle A F E$ and $\angle B F D$. If $m \angle 1=(3 x+11)^{\circ}, m \angle 2=(5-2 x)^{\circ}, M \angle C F E=(9 x+24)^{\circ}$.
a. Find x .
b. Find the $\mathrm{m} \angle 1, \mathrm{~m} \angle 2, \mathrm{~m} \angle \mathrm{CFE}$.

44-47: Sometimes, Always, Never: Draw a diagram justifying your answer.
44. Any figure made up of two rays is an angle.
45. $\angle \mathrm{JKL}$ is the same as $\angle \mathrm{LKJ}$.
46. When D is in the interior of $\angle \mathrm{ABC}$, the Angle Addition Postulate allows you to conclude that $\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle \mathrm{ABD}$
47. Vertical angles add up to 180°.

48 - 51: Find the length of the missing segment using Segment Addition Postulate.
48.

49.
50.

51.

${ }^{* * *}$ Factoring Quadratics or Quadratic formula $\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)$, Graphing lines $(y=m x+b)$, and Slope formula ($m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$) are all necessary skills from Algebra 1 that will be on this assessment. ***

