☐ Use when you get it right all by yourself

 ${m S}$ Use when you did it all by yourself, but made a silly mistake ${m H}$ Use when you could do it alone with a little help from teacher or peer

 $m{G}$ Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Special Segments	1, 2 - 5	14 - 16	25 - 30
Slope	1b		
Point-Slope Form	1c		
Perpendicular Slope	1d		
Point of Concurrency	2 - 5		
Angle & Side Restrictions		6-9	32 - 34
Solving Inequalities		6-9	32 - 34
Simplifying Radicals	10		
Isosceles Triangles		6 - 9	32 - 34
Parallel Lines: AIA Thm		13	34
Midsegment & Midsegment Triangle	17 - 24		
Counterexamples			25 - 30
Midpoint Formula	1a		
Triangle Sides/Angles shortest to longest	11, 17 - 24	12, 14 - 16, 31	13
Distance Formula	31		
Classifying Triangles	31		

- 1. In $\triangle ABC$, \overline{AD} is a median, and A(-2,2), B(2,6), and C(6,-4).
- A. 41) What is the coordinate of point D?
- B. $\frac{1}{\sqrt{D}}$ What is the slope of \overline{AD} ?
- C. _____ Find the equation in point slope form of \overline{AD} . $y-1=-\frac{1}{6}(x-4)$
- D. ____ Find the slope of the altitude from vertex C.

Match:

2. D	Circumcenter

3. C Centroid

4. A Orthocenter

5. B Incenter

A Altitude

B Angle Bisector

C Median

D Perpendicular Bisector

Solve:

6. - 5 LX 24

Find restrictions on x.

7. \times >28 Find the restrictions on \times

8. Find x = 3

9._____ Use triangle inequalities to compare $\angle 1$, $\angle 2$ and $\angle 3$.

mx15mx2 <mx3

10. $\frac{\sqrt{es}}{\sqrt{2}}$, $\frac{\Delta}{\sqrt{2}} = \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$ Why?

BC, AC, AB 11. In $\triangle ABC$ m $\angle A = (3x)^o$, m $\angle B = (x + 12)^o$ and m $\angle C = (x + 3)^o$. List the sides of the triangle from longest to shortest.

AB; AO; DB; BC; Dfz

List the sides of the whole figure from shortest to longest.

13.
$$m \angle 1 = \frac{42^{\circ}}{15^{\circ}}$$

- 14. Find AB if BD is a median of \triangle ABC. 10.6
- 15. Find BC if AD is an altitude of \triangle ABC. 656

16. Find m∠ABC if BD is an angle bisector of \ABC.

17-24: Use the diagram to the right to find the required values.

$$LO = 6x + 4$$
, $LM = 4x$, $MP = 3x$, and $NO = 42$ m \angle LPM = 52° m \angle L = 44°

Sometimes, Always or Never: Prove an Always, counterexample for Never, and both for Sometimes. Words or pictures are acceptable.

- 25. A right triangle is isosceles.
- 26. An isosceles triangle is equilateral.
- 1 27. In an obtuse triangle the circumcenter is outside the triangle.
- _28. In an equiangular triangle the centroid is equidistant from the sides.
- 29. An acute triangle is isosceles.
- 30. The incenter is the center of gravity.

31. Classify the triangle with coordinates A(4, -2) B(-6, 1) and C(14, 1) as scalene, isosceles, or equilateral. What is the largest angle of the triangle? (show calculations)

AB; BC; AC 32. In $\triangle ABC$ m $\angle A = 49^{\circ}$, m $\angle B = 21^{\circ}$ and m $\angle C = 110^{\circ}$. List the sides of the triangle from longest to shortest.

List the sides for the whole figure from shortest to longest.

Chapter 6 Test Study Guide:

- 1) Triangle Inequality Theorem
- 2) Midsegment Triangle Theorem
- 3) Triangle Inequality Theorem
- 4) Special Segments & their special properties
- 5) Special Segments & their special properties
- 6) Triangle Inequality Theorem
- 7) A) Distance formula & Triangle Inequality Theorem
 - B) Midpoint formula & Special Segments
 - C) Perpendicular slope & Special Segments
- 8) Special Segments
- 9) Special Segments & POC's
- 10) POC's
- 11) POC's

- 12) POC's
- 13) POC's
- 14) POC's
- 15) Straw Activity: What makes a triangle work?
- 16) Straw Activity: What makes a triangle work?
- 17) Special Segments
- 18) Special Segments
- 19) Special Segments
- 20) Special Segments
- 21) Special Segment Constructions & POC (watch videos on the website!)