\qquad Date \qquad Pd \qquad

Chapter 7 Quadrilaterals Test Review

Remember the test study guide list by question in on the back of the vocabulary list. ALWAYS draw a diagram if one is not provided. Do not forget appropriate units and notation!

1. Place an X in each box in which the property is TRUE.

Parallelogram									
Rhombus									
Rectangle									
Square									
Kite									
Trapezoid									
Isosceles Trapezoid									

2. Answer the following with (A)lways, (S)ometimes, or (N)ever true.
a. \qquad The opposite sides of a kite are congruent.
b. \qquad The diagonals of a parallelogram bisect each other.
c. \qquad A rectangle is a square.
d. \qquad Each diagonal of a rectangle bisects the angles of the rectangle.
e. \qquad A parallelogram with perpendicular diagonals is a rhombus.
3. In rhombus $A B C D$, find the $m \angle A B C$ and $m \angle B C D$ if the $m \angle D C A=(2 n-16)^{\circ}$ and the $m \angle B D A=$ $(4 n-2)^{\circ}$.
4. A rectangle has a diagonal of 13 cm . The width of the rectangle is 7 cm less than its length. Find the dimensions of the rectangle. HINT: draw and label the rectangle!
5. An isosceles trapezoid has legs of length $6 \sqrt{2}$ and base angles that measure 45°. If the shorter base of the trapezoid measures 10 cm , find the length of the longer base. HINT: draw and label!
6. Given that WEST is a rectangle with $\mathrm{m} \angle \mathrm{WTV}=68^{\circ}, \mathrm{SV}=8$, and $\mathrm{TW}=6$. LABEL!!!
a. $\mathrm{m} \angle \mathrm{TWV}=$ \qquad
b. $\mathrm{m} \angle \mathrm{VEW}=$ \qquad
c. $\mathrm{m} \angle \mathrm{SVE}=$ \qquad
d. $\mathrm{m} \angle \mathrm{TSV}=$ \qquad
e. $\mathrm{VE}=$ \qquad
f. WS = \qquad

g. $\mathrm{EW}=$ \qquad
7. Trapezoid MNST with bases $\overline{M N}$ and $\overline{S T}, \mathrm{~m} \angle \mathrm{M}=(4 \mathrm{x}+5)^{\circ}, \mathrm{m} \angle \mathrm{N}=(6 \mathrm{x}-7)^{\circ}, \mathrm{m} \angle \mathrm{S}=(8 \mathrm{x}-9)^{\circ}$, $\mathrm{m} \angle \mathrm{T}=$ \qquad _.
8. Isosceles Trapezoid KENO with bases $\overline{K E}$ and $\overline{N O}, \mathrm{~m} \angle \mathrm{~K}=(9 \mathrm{x}-15)^{\circ}, \mathrm{m} \angle \mathrm{E}=(3 \mathrm{x}+27)^{\circ}$, $\mathrm{m} \angle \mathrm{O}=$ \qquad _.
9. Trapezoid LUCK with bases $\overline{L U}$ and $\overline{K C}, \mathrm{~m} \angle \mathrm{~K}=90^{\circ}, \mathrm{m} \angle \mathrm{U}=135^{\circ}, \mathrm{LK}=18 \mathrm{in}, \mathrm{LU} 47 \mathrm{in}$, KC = \qquad —.
10. In quadrilateral $\mathrm{ABCD}, \mathrm{m} \angle \mathrm{CBD}=62^{\circ}, \mathrm{m} \angle \mathrm{BCA}=28^{\circ}, \mathrm{m} \angle \mathrm{CDB}=62^{\circ}, \mathrm{m} \angle \mathrm{BDA}=62^{\circ}$, and $m \angle D A C=28^{\circ}$. Based on these measures, what kind of quadrilateral is $A B C D$? Be as specific as you can be! Go to the lowest possible polygon on the tree diagram as possible to be specific!
11. In parallelogram $W X Y Z$, diagonals $W Y=X Z$. If $W X=2 x, X Y=13-y, Y Z=y+7$, and $W Z=3 x$, give the most specific name and find the perimeter of the quadrilateral.
12. The coordinates of quadrilateral PQRS are given. Determine what kind of parallelogram is formed by the coordinates. You must show enough algebra to justify your answer and be as specific as possible.
a. $P(1,3) ; Q(4,1) ; R(1,-1) ; S(-2,1)$
b. $P(3,3) ; Q(5,-1) ; R(1,-3) ; S(-1,1)$
13. Kite $J A I M$ with $J A=J M, m \angle A J M=120^{\circ}, m \angle J M I=103^{\circ}, A M=46 \mathrm{~m}, \mathrm{EI}=52 \mathrm{~m}$. LABEL!!
$\mathrm{m} \angle \mathrm{JME}=$ \qquad
\qquad
$\mathrm{IM}=$ \qquad

14. Kite KYRA with $Y K=Y R, K R=36 \mathrm{~cm}, \mathrm{HA}=12 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{KYR}=84^{\circ}, \mathrm{YA}=20 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{YRA}=88^{\circ}$.

$$
\mathrm{m} \angle \mathrm{YRH}=
$$

$\mathrm{m} \angle \mathrm{KAR}=$ \qquad
$A R=$ \qquad
$Y R=$ \qquad

15. Given that PAIN is a square, answer the following. If $\mathrm{PI}=24 \mathrm{u}$, then $\mathrm{IN}=$ \qquad -.

If $\mathrm{Al}=18 \mathrm{u}$, then $\mathrm{TN}=$ \qquad .

$$
\mathrm{m} \angle \mathrm{API}=
$$

16. Given that $A B E D$ is a rhombus with $A E=24 \mathrm{~mm}$ and $\mathrm{m} \angle B E D=60^{\circ}$.

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{BCE}= \\
& \mathrm{m} \angle \mathrm{ABC}= \\
& \mathrm{m} \angle \mathrm{CED}= \mathrm{m} \angle \mathrm{ABE}=
\end{aligned}
$$

17. Solve using any method: (factoring, quadratic formula, completing the square, etc.)
a. $2 x^{2}-5 x-12=0$
b. $4 x^{2}-9 x+2=0$

