Honors Geometry Semester Exam Review Spring '19

To earn full bonus credit on the final exam: all problems must have work and be completed on a separate sheet of paper.

1. The radius of a circle is 6 . If $\widehat{A B}$ measures 120°, then the area of the region between $\overline{A B}$ and $\widehat{A B}$ is \qquad .

A) 24π
B) 12π
C) $24 \pi-9 \sqrt{3}$
D) $12 \pi-9 \sqrt{3}$
2. Find the measure of $\angle B A C$.

A) 54°
B) 108°
C) 72°
D) 36°
3. Find the measure of $\angle 1$.

A) 135°
B) 22.5°
C) 45°
D) 67.5°
4. Find the area of the shaded region if the radius of the larger circle is 16 and the radius of the smaller circle is 9 .

A) 81π
B) 175π
C) 256π
D) 337π
5. Find the area of the sector if the measure of the arc is 72°.
A) 80π
B) 4π
C) 20π
D) $\frac{5 \pi}{18}$

6. Find x .

A) 576
B) 288
C) 24
D) $8 \sqrt{5}$
7. Find x .

A) 15
B) 24
C) 3
D) 48
8. Find x .

A) 20
B) 2
C) 16
D) 6
9. $\triangle A B C$ is equilateral with perimeter 30 . Find the area of the triangle.
A) $25 \sqrt{3}$
B) $50 \sqrt{3}$
C) $\frac{5 \sqrt{3}}{2}$
D) $\frac{25 \sqrt{3}}{4}$
10. Suppose the radius of a circle is 15 cm and the center is 9 cm from the midpoint of a chord. Find the length of the chord.
A) 24 cm
B) 12 cm
C) 30 cm
D) 17 cm
11. Write an equation for the circle with center $(5,-2)$ and a diameter of 4 units.
A) $(x-5)^{2}+(y+2)^{2}=4$
B) $(x+5)^{2}+(y+2)^{2}=16$
C) $(x+5)^{2}+(y-2)^{2}=2$
D) $(x-5)^{2}+(y-2)^{2}=4$
12. Circle Q has a diameter of 6 . Find the length of an arc whose central angle measures 40°.
A) π
B) $\frac{\pi}{3}$
C) $\frac{2 \pi}{3}$
D) $\frac{16 \pi}{3}$
13. RSTU is a rectangle with diagonal intersection X. If $S X=10 a-15$ and $X U=a+12$, find the value of RT.
A) 3
B) 15
C) 30
D) 45
14. RSTU is a rectangle with diagonal intersection X. If $\angle T S X=50^{\circ}$, find the measure of $\angle U T X$.
A) 25°
B) 40°
C) 50°
D) 100°
15. Diagonals are always congruent in a
A) trapezoid
B) square
C) rhombus
D) parallelogram
16. In quadrilateral $\mathrm{ABCD}, A B \cong B C \cong C D$, and $\angle A \cong \angle B$. What is the most accurate name for the quadrilateral?
A) rhombus
B) rectangle
C) square
D) isosceles trapezoid
17. Find the area of the given parallelogram.
A) $40 \sqrt{3}$
B) $20 \sqrt{3}$
C) 40
D) 20

18. A square is inscribed in a circle with radius r. Find the area of the square in terms of the radius of the circle.
A) $2 r^{2}$
B) $r \sqrt{2}$
C) $r \sqrt{3}$
D) $\frac{r \sqrt{2}}{2}$
19. The measures of the bases of a trapezoid are 40 and 100. What is the measure of the median of the trapezoid?
A) 30
B) 60
C) 70
D) 140
20. In circle $\mathrm{Q}, \overline{C D}$ is 18 cm long and 3 cm from the center. What is the length of the diameter?
A) $18 \sqrt{10} \mathrm{~cm}$
B) $6 \sqrt{10} \mathrm{~cm}$
C) $3 \sqrt{10} \mathrm{~cm}$
D) 90 cm
21. How many sides does a regular polygon have if the measure of one interior angle is 108° ?
A) 8
B) 7
C) 6
D) 5
22. What is the sum of the measures of the interior angles of a convex octagon?
A) 1260°
B) 1440°
C) 1080°
D) 135°
23. The apothem of a regular hexagon is 12. Find its area.
A) $864 \sqrt{3}$
B) $144 \sqrt{3}$
C) 432
D) $288 \sqrt{3}$
24. Approximate to the thousandths, area of a regular pentagon with side length 6.
A) 123.874
B) 103.229
C) 61.937
D) 3.633
25. Two spheres fit exactly when placed one on top of the other inside a cylinder. Find the ratio of the volume of the cylinder to the sum of the volumes of the spheres.
A) $3: 2$
B) $2: 3$
C) $3: 2 \pi$
D) $3 \pi: 2$
26. Find the total surface area of a cone with diameter 10 cm and altitude 12 cm .
A) $75 \pi \mathrm{~cm}^{2}$
B) $90 \pi \mathrm{~cm}^{2}$
C) $230 \pi \mathrm{~cm}^{2}$
D) $85 \pi \mathrm{~cm}^{2}$
27. The volume of sphere is $36 \pi \mathrm{~cm}^{3}$. Find the surface area.
A) $36 \pi \mathrm{~cm}^{2}$
B) $108 \pi \mathrm{~cm}^{2}$
C) $230 \pi \mathrm{~cm}^{2}$
D) $85 \pi \mathrm{~cm}^{2}$
28. The base of a triangular prism is an equilateral triangle with a perimeter of 24 inches. If the height of the prism is 5 in ., find the lateral area.
A) $120 \mathrm{in}^{2}$
B) $60 \mathrm{in}^{2}$
C) $40 \mathrm{in}^{2}$
D) $360 \mathrm{in}^{2}$
29. Which statement is NOT true?
A) All squares are rhombi.
B) All squares are rectangles.
C) All rhombi are kites.
D) All rhombi are parallelogram.
30. A cone and a cylinder have equal radii and heights. What is the ratio of their volume?
A) $1: 1$
B) $1: 3$
C) $1: 2$
D) Not enough info.
31. The areas of two $30^{\circ}-60^{\circ}-90^{\circ}$ triangles are in the ratio of $1: 4$. If the hypotenuse of the larger triangle is 12 , what is the length of the side opposite of the 60° angle in the smaller triangle?
A) 6
B) 3
C) $3 \sqrt{3}$
D) $\frac{3}{2}$
32. In the circle, arc $D F=120^{\circ}$ and the $\mathrm{m} \angle D=70^{\circ}$.

Find the $\mathrm{m} \angle D E K$.
A) 50°
B) 60°
C) 100°
D) 35°

33. QUAD is a parallelogram with $Q X=D X=4 \sqrt{2}$ and $U A=8$. Which of the following best describes QUAD? (Figure is not drawn to scale.)

A) Parallelogram
B) Rectangle
C) Rhombus
D) Square
34. A guy wire attached to the ground at point A is 50 m long and makes an angle of 58° with the ground. Suppose it were fastened at point B, making an angle of 70° with the ground. Which of the following are needed to calculate the new length of the wire?
A) $\sin 58^{\circ}, \sin 70^{\circ}$
B) $\cos 58^{\circ}, \cos 70^{\circ}$
C) $\sin 58^{\circ}, \cos 70^{\circ}$
D) $\sin 70^{\circ}, \cos 58^{\circ}$
35. Sam is flying a kite on a $40-\mathrm{m}$ string. The angle of elevation of the kite measures 35°, and Sam's hand is 1.8 m above the ground. About how high is the kite off the ground? Round to the tenth.
A) 21.1 m
B) 22.9 m
C) 23.7 m
D) 24.7 m
36. Find the value of x and y.
$\mathrm{x}=$ \qquad

$$
y=
$$

37. In $\triangle R S T, \angle R$ is the right angle. If $\cos T=\frac{4}{5}$, find $\tan S$.

A) $\frac{5}{4}$
B) $\frac{3}{4}$
C) $\frac{4}{3}$
D) $\frac{4}{5}$
38. A polygon with all sides equal and all angles equal is called
(A) congruent
(B) regular
(C) hexagon
(D) complementary
39. The sum of the exterior angles of a convex hexagon is \qquad .
40. The sum of the interior angles of a convex octagon is \qquad .
41. An angle whose vertex is the center of a circle is called $a(n)$ __ angle.
(A) inscribed
(B) circumscribed
(C) central
(D) adjacent
42. A segment that joins the center with a point on a circle is know as a
(A) radius
(B) diameter
(C) secant
(D) chord
43. A chord of a circle which passes through the center is a \qquad
(A) secant
(B) tangent
(C) diameter
(D) radius
44. An arc of a circle that has a measure of 180 is known as a(n)
(A) minor arc
(B) major arc
(C) semi-circle
(D) central angle
45. Find the volume of a cylinder with radius 6 and height 8 .
(A) 96π
(B) 912.96π
(C) 384π
(D) 288π
46. Find the volume of a sphere with a radius of 10 cm . Round to the tenth.
(A) $4188.8 \mathrm{~cm}^{3}$
(B) $418.9 \mathrm{~cm}^{3}$
(C) $1256.6 \mathrm{~cm}^{3}$
(D) none
47. Find the surface area of a sphere with a diameter of 6 inches.
(A) $2714.3 \mathrm{in}^{2}$
(B) $113.1 \mathrm{in}^{2}$
(C) $904.8 \mathrm{in}^{2}$
(D) none
48. $\mathrm{m} \angle 1=$
(A) 30°
(B) 40°
(C) 50°
(D) 80°
49. $\mathrm{m} \angle 2=$
(A) 50°
(B) 100°
(C) 40°
(D) 120°
50. $\mathrm{m} \angle 3=$
(A) 65°
(B) 15°
(C) 110°
(D) 130°

51. $\mathrm{m} \angle 4=$
(A) 10°
(B) 20°
(C) 30°
(D) 40°
52. $\mathrm{m} \angle 5=$
(A) 100°
(B) 200°
(C) 25°
(D) 50°
53. $\mathrm{m} \angle 6=$
(A) 75°
(B) 25°
(C) 15°
(D) 10°

$$
\begin{aligned}
& \overparen{m A B}=80^{\circ} \\
& \overparen{m B C}=20^{\circ} \\
& \overparen{m D E}=50^{\circ}
\end{aligned}
$$

54. Write an equation for a circle with center $\mathrm{T}(-4,-3)$ and a diameter of 12 units.

Find the area of the following figures: (exact and thousandths place)

59.
58.

57.

62. Find the surface area of this prism
(A) $72 \mathrm{~cm}^{2}$
(B) $81 \mathrm{~cm}^{2}$
(C) $90 \mathrm{~cm}^{2}$
(D) $54 \mathrm{~cm}^{2}$

63. Circle ALL the proportions which are correct for the following diagram.
(a) $\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{d}}{\mathrm{c}}$
(b) $\frac{\mathrm{a}+\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}+\mathrm{d}}{\mathrm{d}}$
(c) $\frac{c}{c+d}=\frac{a}{b+a}$
(d) $\frac{\mathrm{a}}{\mathrm{c}}=\frac{\mathrm{b}}{\mathrm{d}}$
(e) $\frac{a}{b}=\frac{e}{f}$
(f) $\frac{c}{c+d}=\frac{e}{f}$

In \#64-67: $\overline{\mathrm{DE}} / / \overline{\mathrm{AB}}$
64. $\mathrm{AC}=12, \mathrm{CD}=4, \mathrm{BC}=24, \mathrm{CE}=_?$.
65. $\mathrm{AB}=8, \mathrm{~EB}=4, \mathrm{CE}=12, \mathrm{DE}=_$? .
66. $\mathrm{AC}=15, \mathrm{AD}=3, \mathrm{BC}=25, \mathrm{BE}=$ _? 2.
67. $\mathrm{AD}=6, \mathrm{CD}=4, \mathrm{CE}=7, \mathrm{BC}={ }_{-}$?. .

In \#68-70: $\overline{\mathrm{TL}} / / \overline{\mathrm{KH}} / / \overline{\mathrm{CD}}$.
68. $\mathrm{TK}=8, \mathrm{HD}=24, \mathrm{LD}=36, \mathrm{KC}={ }_{-}$? .
69. $\mathrm{KC}=24, \mathrm{TK}=8, \mathrm{LD}=48, \mathrm{HD}==_{-}$?.
70. $\mathrm{LH}=25, \mathrm{KC}=36, \mathrm{HD}=45, \mathrm{TK}={ }_{-} ?$. .

In \#71-72, the polygons shown are similar. Find the values of x, y and z.

73 Assume that E, F, and D are midpoints of the segment they lie on. Which segments are congruent and which segments are parallel?

74. Using the diagram from 73 , find x when $F D=7 x$ and $B C=56$.
75. What POC goes with each special segment of a triangle and what are the special properties of the special segment of the triangle?
a. Perpendicular bisector
b. Angle bisector
c. Median
d. Altitude
76. State the special segment that $\overline{A B}$ represents in each triangle below.
a.

b.

c.

d.

e.

77. True or False. If a statement is true, explain why it is true. If a statement is false, provide a counterexample.
a. A median of a scalene triangle goes through a vertex and a midpoint.
b. An angle bisector of a scalene triangle goes through a midpoint.
c. An altitude is always in the interior of the triangle.
d. The altitude of an isosceles triangle drawn from its vertex angle is also an angle bisector.
e. An altitude of a scalene triangle goes through a midpoint.
f. The three medians of any triangle are concurrent.
78. In $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{P}<\mathrm{m} \angle \mathrm{Q}, \mathrm{QR}=3 \mathrm{x}-7$, and $\mathrm{PR}=2 \mathrm{x}+5$. Write an inequality and solve it to give the restrictions on x .
79. Given: $\overline{C D}$ is a median.

$$
\begin{aligned}
& \mathrm{AC}=4 x-1 \\
& \mathrm{BC}=20 \\
& \mathrm{AD}=2 x^{2}-12 \\
& \mathrm{DB}=x^{2}-x
\end{aligned}
$$

a. Find: AC, AD, and DB .
b. List the angles of $\triangle \mathrm{ABC}$ in order from least to greatest.

