\qquad Date \qquad Pd \qquad
Matrices Test Review
\square Use when you get it right all by yourself
S Use when you did it all by yourself, but made a silly mistake HUse when you could do it alone with a little help from teacher or peer \boldsymbol{G} Use when you completed the problem in a group X Use when a question was attempted but wrong (get help) NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Dimensions, addresses, naming matrices	14,15	$16-20$	25
Adding/Subtracting Matrices	8,9	1	4,5
Scalar Multiplication with Matrices	10	1	4
Multiplying Matrices	$12,16-20$	2,11	3
Geometric Transformations with Matrices	27	27	26
Determinants of Matrices, including area of a triangle	6	7	
Inverses of Matrices including solving systems	13,22	$21,23,24$	23,24
Solving Systems with Cramer's Rule		27	

On the test you will be responsible to complete the test with or without a calculator. The calculator should be used to check and occasionally solve a problem more efficiently. No partial credit will be awarded without proper work shown.

1-3: Perform the following operations .Be sure to be able to do them both by hand and using the calculator!
$A=\left[\begin{array}{cc}3 & 1 \\ -5 & 2\end{array}\right]$
$B=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$
$C=\left[\begin{array}{cc}-6 & 0 \\ 4 & 3\end{array}\right]$
$D=\left[\begin{array}{ccc}7 & -2 & 9 \\ -4 & 1 & -8\end{array}\right]$
$E=\left[\begin{array}{lll}7 & 2 & 9 \\ 4 & 1 & 8\end{array}\right]$

1. Find $2 C-B$
2. Find $A \cdot E$
3. Find B^{2}
4. Find K so that $D-2 K=\left[\begin{array}{ccc}2 & 0 & 3 \\ 0 & 1 & -4\end{array}\right]$
5. Solve for x, y and z given: $\left[\begin{array}{cc}x^{2} & y+z \\ -2 & 1\end{array}\right]=\left[\begin{array}{cc}9 & -7 \\ 2 z-y & 1\end{array}\right]$
6. Find $\left|\begin{array}{ccc}2 & -1 & -3 \\ 4 & 0 & 1 \\ -2 & -3 & 5\end{array}\right|$
7. Solve for x : $\left|\begin{array}{ccc}8 & 3 & -1 \\ 2 & 1 & -2 \\ 4 & 1 & x\end{array}\right|=14$

8-15: Perform the following operations .Be sure to be able to do them both by hand and using the calculator!
$A=\left[\begin{array}{cc}3 & 4 \\ 1 & -2 \\ 0 & -1\end{array}\right] \quad B=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right] \quad C=\left[\begin{array}{cc}1 & -1 \\ 3 & 2 \\ 5 & -1\end{array}\right] \quad D=\left[\begin{array}{ccc}-2 & 1 & 4 \\ -1 & 0 & 3\end{array}\right] \quad E=\left[\begin{array}{ccc}1 & -2 & 3 \\ -5 & 0 & 1 \\ -1 & 4 & 2\end{array}\right] \quad$,
8. $A+B$
9. $C-A$
10. $-2 D$
11. $B D$
12. $A C$
13. E^{-1}
14. What number is in c_{22} ?
15. State the dimensions of $A D$.

16-20: Given that $A_{5 \times 2}, B_{2 \times 5}, C_{1 \times 5}$, and $R_{5 \times 2}$, state what the dimensions of the products would be, if they are defined.

| $16 . A B$ | $17 . C B$ | $18 . A R$ | 20. $C A$ |
| :--- | :--- | :--- | :--- | :--- |

21-22: Determine the inverse of the matrix provided. Fractions only, no decimals!!
21. $\left[\begin{array}{cc}2 & -3 \\ 4 & 1\end{array}\right]$
22. $\left[\begin{array}{ccc}-1 & 4 & 0 \\ 2 & 1 & 1 \\ -3 & -2 & 1\end{array}\right]$

23-24: Solve using inverse matrices. Set up a matrix equation first! Then also solve using Cramer's Rule.
23. $\left\{\begin{array}{l}3 x-y=6 \\ x=2 y+1\end{array}\right.$
24. $\left\{\begin{array}{l}x+2 y+1=0 \\ 2 x-y-3=0\end{array}\right.$
25. Solve the matrix for the missing variable.
$\left[\begin{array}{cc}4 & 2 x+3 \\ 5 y-1 & 2\end{array}\right]=\left[\begin{array}{cc}4 & -1 \\ 2 y & 2\end{array}\right]$
26. Use a determinant to find the area of the triangle shown.

27. If $\triangle A B C$ is defined by the matrix, $T=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$, what are the coordinates of the triangle after it has been...
a) rotated 90 degrees counter-clockwise?
b) 90 degrees clockwise?
c) Reflected over the x-axis?
d) Reflected over the y-axis?
e) Rotated 180 degrees?
f) Dilated by a factor of $\frac{2}{3}$?
g) Translated 1 unit to the left and 4 units down?
h) Reflected over the x-axis and dilated by a factor of 4 ?

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

