Matrices Test Review

Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake

HUse when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Dimensions, addresses, naming matrices	14, 15	16 - 20	25
Adding/Subtracting Matrices	8, 9	1	4, 5
Scalar Multiplication with Matrices	10	1	4
Multiplying Matrices	12, 16 - 20	2, 11	3
Geometric Transformations with Matrices	27	27	27
Determinants of Matrices, including area of a triangle	6	7	26
Inverses of Matrices including solving systems	13, 22	21, 23, 24	
Solving Systems with Cramer's Rule		23, 24	

NUse when a question was not even attempted

On the test you will be responsible to complete the test with or without a calculator. The calculator should be used to check and occasionally solve a problem more efficiently. No partial credit will be awarded without proper work shown.

1-3: Perform the following operations .Be sure to be able to do them both by hand and using the calculator!

$A = \begin{bmatrix} 3 & 1 \\ -5 & 2 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 3 & -1 \end{bmatrix}$	$C = \begin{bmatrix} -6 & 0 \end{bmatrix}$	$D = \begin{bmatrix} 7 & -2 & 9 \end{bmatrix}$	$F = \begin{bmatrix} 7 & 2 & 9 \end{bmatrix}$
	$\begin{bmatrix} 4 & 3 \end{bmatrix}$	$\begin{bmatrix} -4 & 1 & -8 \end{bmatrix}$	$L = \begin{bmatrix} 4 & 1 & 8 \end{bmatrix}$	

1. Find 2C - B

2. Find $A \cdot E$

3. Find B^2

4. Find *K* so that $D - 2K = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 1 & -4 \end{bmatrix}$

5. Solve for x, y and z given:
$$\begin{bmatrix} x^2 & y+z \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & -7 \\ 2z-y & 1 \end{bmatrix}$$

6. Find $\begin{vmatrix} 2 & -1 & -3 \\ 4 & 0 & 1 \\ -2 & -3 & 5 \end{vmatrix}$

7. Solve for x:
$$\begin{vmatrix} 8 & 3 & -1 \\ 2 & 1 & -2 \\ 4 & 1 & x \end{vmatrix} = 14$$

8-15: Perform the following operations .Be sure to be able to do them both by hand and using the calculator!

$A = \begin{bmatrix} 3 & 4\\ 1 & -2\\ 0 & -1 \end{bmatrix}$	$B = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$	$C = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ 5 & -1 \end{bmatrix}$	$D = \begin{bmatrix} -2 & 1 & 4 \\ -1 & 0 & 3 \end{bmatrix}$	$E = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 0 & 1 \\ -1 & 4 & 2 \end{bmatrix}$
8. <i>A</i> + <i>B</i>		9. <i>C</i> – <i>A</i>		
10. –2 <i>D</i>		11. <i>BD</i>		
12. <i>AC</i>		13. E^{-1}		

14. What number is in c_{22} ?

15. State the dimensions of AD .

16 – 20: Given that $A_{5\times 2}$, $B_{2\times 5}$, $C_{1\times 5}$, and $R_{5\times 2}$, state what the dimensions of the products would be, if they are defined.

16. <i>AB</i>	17. <i>CB</i>	18. <i>AR</i>	19. <i>RB</i>	20. <i>CA</i>
21 – 22: Determine the inverse of the matrix provided. Fractions only, no decimals!!				

	Γa	27		-1	4	0
21.		$\begin{bmatrix} 2 & -5 \\ 4 & 1 \end{bmatrix}$	22.	2	1	1
	_4			-3	-2	1

23 – 24: Solve using inverse matrices. Set up a matrix equation first! Then also solve using Cramer's Rule.

 $23. \begin{cases} 3x - y = 6\\ x = 2y + 1 \end{cases}$

24. $\begin{cases} x + 2y + 1 = 0 \\ 2x - y - 3 = 0 \end{cases}$

25. Solve the matrix for the missing variable.

$$\begin{bmatrix} 4 & 2x+3 \\ 5y-1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 2y & 2 \end{bmatrix}$$

26. Use a determinant to find the area of the triangle shown. (

27. If $\triangle ABC$ is defined by the matrix, $T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, what are the coordinates of the triangle after it has been...

a) rotated 90 degrees counter-clockwise?

b) 90 degrees clockwise?

- c) Reflected over the x-axis?
- d) Reflected over the y -axis?
- e) Rotated 180 degrees?
- f) Dilated by a factor of $\frac{2}{3}$?
- g) Translated 1 unit to the left and 4 units down?
- h) Reflected over the x-axis and dilated by a factor of 4?

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

