	VOIA	
NAME	Co	

Date	Pd	

Matrices Test Review

☑ Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake

H Use when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Dimensions, addresses, naming matrices	14, 15	16 - 20	25
Adding/Subtracting Matrices	8, 9	1	4, 5
Scalar Multiplication with Matrices	10	1	4
Multiplying Matrices	12, 16 - 20	2, 11	3
Geometric Transformations with Matrices	27	27	27
Determinants of Matrices, including area of a triangle	6	7	26
Inverses of Matrices including solving systems	13, 22	21, 23, 24	
Solving Systems with Cramer's Rule		23, 24	

On the test you will be responsible to complete the test with or without a calculator. The calculator should be used to check and occasionally solve a problem more efficiently. No partial credit will be awarded without proper work shown.

1-3: Perform the following operations .Be sure to be able to do them both by hand and using the calculator!

$$A = \begin{bmatrix} 3 & 1 \\ -5 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} -6 & 0 \\ 4 & 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 7 & -2 & 9 \\ -4 & 1 & -8 \end{bmatrix}$$

$$E = \begin{bmatrix} 7 & 2 & 9 \\ 4 & 1 & 8 \end{bmatrix}$$

2. Find
$$A \cdot E$$

3. Find
$$B^2$$

4. Find
$$K$$
 so that $D-2K = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 1 & -4 \end{bmatrix}$ $K = \begin{bmatrix} \frac{5}{2} & -1 & 3 \\ -2 & 0 & -2 \end{bmatrix}$

$$=\begin{bmatrix} \frac{5}{2} & -1 & 3 \\ -2 & 0 & -2 \end{bmatrix}$$

5. Solve for
$$x$$
, y and z given:
$$\begin{bmatrix} x^2 & y+z \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & -7 \\ 2z-y & 1 \end{bmatrix} \qquad \chi = \pm 3; \quad y = -4; \quad \chi = -3$$

6. Find
$$\begin{vmatrix} 2 & -1 & -3 \\ 4 & 0 & 1 \\ -2 & -3 & 5 \end{vmatrix} = \boxed{64}$$

7. Solve for
$$x$$
:
$$\begin{vmatrix} 8 & 3 & -1 \\ 2 & 1 & -2 \\ 4 & 1 & x \end{vmatrix} = 14$$

* 8-15: Perform the following operations .Be sure to be able to do them both by hand and using the calculator!

$$A = \begin{bmatrix} 3 & 4 \\ 1 & -2 \\ 0 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ 5 & -1 \end{bmatrix} \qquad D = \begin{bmatrix} -2 & 1 & 4 \\ -1 & 0 & 3 \end{bmatrix} \qquad E = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 0 & 1 \\ -1 & 4 & 2 \end{bmatrix}$$

8.
$$A+B$$

$$A_{3\times2} + B$$

$$A_{0} + B$$

$$A_{0}$$

$$\begin{bmatrix}
 4 & -2 & -8 \\
 2 & 0 & -6
 \end{bmatrix}$$

13.
$$E^{-1}$$
 (calculator) $\begin{bmatrix} \frac{2}{41} & \frac{-8}{41} & \frac{1}{41} \\ -\frac{9}{82} & \frac{8}{41} & \frac{1}{41} \\ \frac{9}{41} & \frac{5}{41} & \frac{5}{41} \end{bmatrix}$

14. What number is in
$$c_{22}$$
?

15. State the dimensions of
$$AD$$
.

16 – 20: Given that $A_{5\times2}$, $B_{2\times5}$, $C_{1\times5}$, and $R_{5\times2}$, state what the dimensions of the products would be, if they are defined.

16.	AB

17. CB

18. AR

19. RB

20. CA

21.
$$\begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$$

21 – 22: Determine the inverse of the matrix provided. Fractions only, no decimals!

21.
$$\begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$$
21.
$$\begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$$
22.
$$\begin{bmatrix} -1 & 4 & 0 \\ 2 & 1 & 1 \\ -3 & -2 & 1 \end{bmatrix}$$
23.
$$\begin{bmatrix} -1 & 4 & 0 \\ 2 & 1 & 1 \\ -3 & -2 & 1 \end{bmatrix}$$

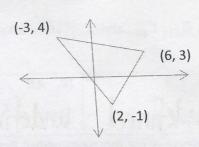
23 – 24: Solve using inverse matrices. Set up a matrix equation first! Then also solve using Cramer's

23.
$$\begin{cases} 3x - y = 6 \\ x = 2y + 1 \end{cases}$$

$$\left(\frac{11}{5},\frac{3}{5}\right)$$

$$d = -5$$
 $d_1 = -11$
 $d_2 = -3$

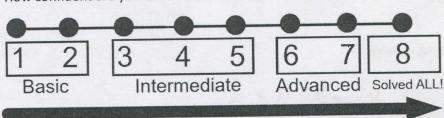
24.
$$\begin{cases} x + 2y + 1 = 0 \\ 2x - y - 3 = 0 \end{cases}$$


$$d = -5$$
 $d_1 = -5$
 $d_2 = 5$

25. Solve the matrix for the missing variable.

$$\begin{bmatrix} 4 & 2x+3 \\ 5y-1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 2y & 2 \end{bmatrix} \qquad X = -2; \ Y = \frac{1}{3}$$

$$x = -2$$
, $y = \frac{1}{3}$


27. If $\triangle ABC$ is defined by the matrix, $T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, what are the coordinates of the triangle after it has been...

- a) rotated 90 degrees counter-clockwise?
- b) 90 degrees clockwise?
- c) Reflected over the x -axis?
- d) Reflected over the y -axis?
- e) Rotated 180 degrees?
- f) Dilated by a factor of $\frac{2}{3}$?
- g) Translated 1 unit to the left and 4 units down?
- h) Reflected over the $\,x$ -axis and dilated by a factor of 4?

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

