\qquad Date \qquad Pd

Quiz Review 4.1-4.4

1. $f(x)=4 x^{3}-3 x^{2}-2 x+5$

Domain: \qquad
Range: \qquad
Total \# of roots: \qquad
Real Roots: \qquad
Imaginary Roots: \qquad
Absolute min: \qquad
Absolute max: \qquad
Relative min: \qquad
Relative max: \qquad
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $\mathrm{x} \rightarrow-\infty, f(x) \rightarrow$
Increasing interval(s): \qquad
Find a window that shows the whole graph.

Decreasing interval(s): \qquad
2. $f(x)=-x^{4}+2 x^{3}+4 x^{2}-11 x+6$

Domain: \qquad
Range: \qquad
Total \# of roots: \qquad
Real Roots: \qquad
Imaginary Roots: \qquad
Absolute min: \qquad
Absolute max: \qquad
Relative min: \qquad
Relative max: \qquad
As $\mathrm{x} \rightarrow \infty, f(x) \rightarrow$ \qquad
As $\mathrm{x} \rightarrow-\infty, f(x) \rightarrow$
Increasing interval(s): \qquad
Decreasing interval(s):
Find a window that shows the whole graph.

x min	x max
$y \mathrm{~min}$	y max

\qquad

Sketch a graph matching each description without your calculator. Then use your calculator to check your sketch.
3) A cubic function with 3 real zeros and a negative leading coefficient.

4) A quartic function with 2 real zeros where each has a multiplicity of two. The leading coefficient is positive.

State the degree, end behavior, y-intercept, x-intercepts, and increasing/ decreasing intervals for the following functions.
5) $(x+2)(x-4)(5-x)$
6) $(x+1)^{2}(x+3)(x-2)$

Simplify the following polynomials completely. Write your final answer in standard form.
7) $\left(x^{3}-x+2\right)+\left(x^{2}-2 x-7\right)-\left(2 x^{3}-3 x^{2}+5 x+4\right)$
8) $(n-2)\left(n^{3}-2 n+7\right)$

First determine if the binomial is a factor of the polynomial given using the Remainder Theorem. Then divide to prove your answer. Be able to use both long division and synthetic division.
9) LONG division. $\left(2 x^{3}-x^{2}-13 x-6\right) \div(2 x+1)$
10) SYNTHETIC division. $\left(x^{4}+2 x^{3}-x^{2}+6\right) \div(x-1)$

Factor the polynomials completely.
11) $12 n^{3}+96 n^{2}+192 n$
12) $108 y^{6}+32 y^{3}$
13) $x^{3}+x^{2}-16 x-16$
14) $7 p^{12}+49 p^{9}+70 p^{6}$
15) Show that $x-2$ is a factor of $f(x)=3 x^{4}-8 x^{3}+4 x^{2}+4 x-8$. Then factor completely, if possible.

Random:

16) Write an expression for the area and perimeter for the figure shown.

