## Quiz Review CYU 4.1 - 4.9

☑ Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake

H Use when you could do it alone with a little help from teacher or peer

- G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

| CONCEPTS                                     | BASIC  | INTERMEDIATE | ADVANCED   |  |
|----------------------------------------------|--------|--------------|------------|--|
| Degree of a polynomial                       | 1      |              |            |  |
| End behavior                                 | 1, 16  | 9, 10, 11    | 17         |  |
| Number of possible zeros                     | 1, 2   | 9, 10, 11    |            |  |
| Even or odd function                         | 2      | 9, 10, 11    | 17         |  |
| Domain & Range in interval notation          | 3      |              |            |  |
| Graphing polynomial function on the calc.    | 3, 7   | 11           |            |  |
| Synthetic Division                           | 4      |              | 8, 18      |  |
| Factors of polynomials                       | 4      | 5, 14        | 11, 13, 15 |  |
| Remainder theorem                            | 6      |              | 13, 15     |  |
| Solving polynomial equations                 |        | 7            |            |  |
| Sketching polynomial functions w/o the calc. |        | 9, 10        |            |  |
| Multiplicities                               | 9, 10  | 11           |            |  |
| Synthetic Substitution                       | 12     | 15           | 13         |  |
| x and y intercepts                           |        | 11, 14       |            |  |
| Leading coefficient                          |        | 9, 10, 11    | 17         |  |
| Rational Root Theorem                        |        | 18           |            |  |
| Descartes' Rule of Signs                     |        |              | 18         |  |
| Factoring                                    |        |              | 18         |  |
| Writing polynomial functions                 |        | 21, 22       | 19, 20     |  |
| Finding the "a" value for a graph            |        | 19, 20       |            |  |
| Imaginary & Irrational Conjugates            | 21, 22 |              |            |  |
| Regression on the calculator                 | 23     |              |            |  |
| Finite differences                           |        | 23           |            |  |

1. State the degree for the polynomial function,  $f(x) = x^5 - 4x^3 + 2x - 3$ , describe end behavior in sentence form, and tell how many zeros it **could** have. 5

As  $x \rightarrow f(x) \rightarrow \infty$ . As  $x \rightarrow -\infty$ ,  $f(x) \rightarrow -\infty$ .

- 2. Is the graph to the right an even- or odd-degreed function? How many real zeros does it have?
- 3. Determine the domain and range of  $f(x) = x^5 6x^2 + x^2 3$





5. Using the graph to the right, list all the factors.

$$(x+2)(x+1)(x-1)(x-2)(x-3)$$

6. Find the remainder for  $(2x^3 - 3x^2 + 4x - 5) \div (x - 2)$ 



7. Solve  $2x^3 - 5x^2 - 4x + 3 = 0$  over the set of real #'s.

- 8. Find the value of k so that the remainder for  $(x^3 2x^2 + x k) \div (x 2)$  is 8.
- 9. Sketch a Graph with zeros at (5, 0), (-1, 0) and (-5, 0) with multiplicity of 2, and a lead coefficient that is negative.



10. Sketch a Graph that has solutions x = 0, 5, and -4 with multiplicity of 3 and a positive leading coefficient.



11. Sketch the graph of  $f(x) = x^2(x - 3)(x + 1)$  using correct end behavior, x and y intercepts.



12. Use synthetic substitution to find f(2) for  $f(x) = 4x^3 - 3x^2 + 7$ .

- 13. Given f(-2) = 0 for a certain polynomial function, which of the following statements regarding the polynomial is TRUE?
- A. x + 2 is a factor
- C. 2 is a solution
- D. -2 is a solution

- E. A and C are true
- B. x-2 is a factor F. A and D are true
- G. B and D are true
- H. ALL statements are false.

14. What are the x-intercepts for (x-3)(x+4)(x-1) = f(x)?

15. Given that f(3) = -44 for  $f(x) = x^3 - 8x^2 + 2x - 5$ , which statement below is true?

A. 
$$x-3$$
 is a factor of  $f(x) = x^3 - 8x^2 + 2x - 5$   
B.  $x+3$  is a factor of  $f(x) = x^3 - 8x^2 + 2x - 5$ 

B. 
$$x + 3$$
 is a factor of  $f(x) = x^3 - 8x^2 + 2x - 5$ 

E) 
$$f(x) = x^3 - 8x^2 + 2x - 5 \div (x - 3)$$
 has a remainder of -44

F. 
$$f(x) = x^3 - 8x^2 + 2x - 5 \div (x + 3)$$
 has a remainder of -44

16. Which of the following is true for a function whose degree is even and whose leading coefficient is negative?

A. As x approaches 
$$-\infty$$
,  $f(x)$  approaches  $+\infty$   
As x approaches  $+\infty$ ,  $f(x)$  approaches  $+\infty$ 

C. As x approaches 
$$-\infty$$
,  $f(x)$  approaches  $-\infty$ , As x approaches  $+\infty$ ,  $f(x)$  approaches  $+\infty$ 

B. As x approaches 
$$-\infty$$
,  $f(x)$  approaches  $-\infty$ , As x approaches  $+\infty$ ,  $f(x)$  approaches  $-\infty$ ,

D. As x approaches 
$$-\infty$$
,  $f(x)$  approaches  $+\infty$   
As x approaches  $+\infty$ ,  $f(x)$  approaches  $-\infty$ ,

17. The following graph illustrates a function whose degree is \_\_\_\_ and whose leading coefficient is \_\_\_\_

A. even, negative

B. even, positive

C. odd, negative

D. odd, positive



18. Given: 
$$f(x) = x^3 + x^2 + x + 1$$

A. List all possible rational roots using Rational Root Theorem.

B. Use Descartes rule of signs to determine the number of positive, negative or complex roots.

| + | - | U |     |
|---|---|---|-----|
| 0 | 3 | 0 | _ 3 |
| 0 | 1 | 2 |     |

C. Find all rational roots by dividing until you factor.

$$-1 \rightarrow (x^2 + 1)$$

D. List the zeros/solutions/roots.

$$X = -1, \pm i$$

Write the polynomial function, by finding the "a" value first.





$$a = \frac{1}{\text{Function:}} \frac{1}{f(x)} = \frac{1}{(x+3)(x+1)(x-2)} \quad a = \frac{t}{\text{Function:}} \frac{1}{g(x)} = \frac{t}{b(x+b)(x+3)(x-3)}$$

Given the zeros write the lowest degree polynomial function.

21. 
$$x = 1, -4, \sqrt{7}$$

22. 
$$x = -6, 0, -2i$$

$$h(x) = x^{4} + 3x^{3} - 11x^{2} - 21x + 28$$
  $P(x) = x^{4} + 6x^{3} + 4x^{2} + 24x$ 

$$P(x) = x^4 + 6x^3 + 4x^2 + 24x$$

23. Use finite differences to determine the degree of the function. Then use technology to model the data provided.

| provided. |    |    |    |     |     |     |      |
|-----------|----|----|----|-----|-----|-----|------|
| x         | 1  | 2  | 3  | 4   | 5   | 6   | 7    |
| f(x)      | -4 | -2 | -4 | -16 | -44 | -94 | -172 |

3rd time: Cubic finite différence: 6

Function:  $f(x) = -x^3 + 4x^2 - 3x - 4$ 

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU

